Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-29T22:15:55.381Z Has data issue: false hasContentIssue false

11 - Nanoplasmonics with colloidal quantum dots

from Part III - Optical properties of quantum dots in photonic cavities and plasmon-coupled dots

Published online by Cambridge University Press:  05 August 2012

V. V. Temnov
Affiliation:
Université du Maine, France
U. Woggon
Affiliation:
Technische Universität Berlin, Germany
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

Introduction

Colloidal semiconductor nanocrystals were the first model systems to evidence radiusdependent energy shifts of excitonic states caused by three-dimensional quantum confinement (for reviews see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and references therein). Besides the large tunability of optical emission wavelength, such nanocrystal quantum dots exhibit high quantum efficiency q and can nowadays replace organic dyes in various applications, e.g. act as biomarkers or active laser medium. In the broad field of nanoplasmonics, combinations of metallic nanostructures with semiconductor nanocrystals have potential applications in optoelectronics. The enhancement of spontaneous emission rate near metallic surfaces makes nanocrystals attractive candidates as probes of electromagnetic field distribution and nano-antenna effects. Charge separation at the metal–semiconductor interface can be applied in photocatalytic processes as was recently shown for production of hydrogen in multicomponent metal–semiconductor nanocrystal structures [11, 12]. The modification of optical and electronic properties of colloidal nanocrystals close to a metallic surface is a longstanding issue of research and will be reviewed in this chapter, in particular with a focus on the latest developments. We will start with an overview of fundamental properties of colloidal quantum dots along with a presentation of the most recent results in the field of functionalized colloidal nanostructures. We consider semiconductor and metallic nanostructures separately and describe their properties as individual building blocks for future complex nanosystems. In the following sections we deal with coupling schemes of quantum dots to metal surfaces, discuss practical applications in all-optical plasmonic devices and outline perspectives in quantum optics with surface plasmons.

Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 185 - 202
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Efros, Al. L. and Efros, A. L. 1982. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond., 16, 772.Google Scholar
[2] Brus, L. E. 1984. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys., 80, 4403.Google Scholar
[3] Alivisatos, A. P. 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933.Google Scholar
[4] Woggon, U. 1996. Optical properties of semiconductor quantum dots, Springer Tracts in Modern Physics, 136.Google Scholar
[5] Gaponenko, S. V. and Woggon, U., Landolt-Börnstein New Series III/34C2 Optical Properties of Semiconductor Nanostructures, ed. C., Klingshirn, Springer-Verlag, 2004, Chap. 5.5. II–VI Semiconductor Quantum Dots – Nanocrystals, pp. 284–347.
[6] Wise, F. W. 2000. Lead salt quantum dots: the limit of strong quantum confinement. Accounts Chem. Res., 33, 773.Google Scholar
[7] Eychmuller, A.Mews, A. and Weller, H. 1993. A quantum-dot quantum well – CdS/HgS/CdS.Chem. Phys. Lett., 208, 59.Google Scholar
[8] Dabbousi, B. O., Rodriguez Viejo, J., Mikulec, F. V. et al. 1997. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem.B, 101, 9463.Google Scholar
[9] Hines, M. A. and Guyot-Sionnest, P. 1996. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem., 100, 468.Google Scholar
[10] Murray, C. B., Kagan, C. R. and Bawendi, M. G. 2000. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci., 30, 545.Google Scholar
[11] Amirav, L. and Alivisatos, A. P. 2010. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett., 1, 1051–1054.Google Scholar
[12] Berr, M., Vaneski, A., Susha, A. S. et al. 2010. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation. Appl. Phys. Lett., 97, 093108-1–093108-3.Google Scholar
[13] Costi, R., Saunders, A. E. and Banin, U. 2010. Colloidal hybrid nanostructures: a new type of functional materials, Angew. Chem. Int. Ed., 49, 4878–4897.Google Scholar
[14] Choi, C. L. and Alivisatos, A. P. 2010. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Ann. Rev. Phys. Chem., 61, 369–389.Google Scholar
[15] Wang, L. W. 2010. Novel computational methods for nanostructure electronic structure calculations. Ann. Rev. Phys. Chem., 61, 19–39.Google Scholar
[16] Peng, X. G., Manna, L., Yang, W. D. et al. 2000. Shape control of CdSe nanocrystals. Nature 404, 59–61.Google Scholar
[17] Talapin, D. V., Koeppe, R., Gotzinger, S. 2003. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett., 3, 1677–1681.Google Scholar
[18] Saraidarova, T., Reisfeld, R., Sashchiuk, A. and Lifshitz, E. 2007. Synthesis and characterization of PbS nanorods and nanowires. Physica E, 37, 173–177.Google Scholar
[19] Mulvihill, M. J., Habas, S. E., Jen-La Plante, I., Jiamin, W., and Mokari, T. 2010. Influence of size, shape, and surface coating on the stability of aqueous suspensions of CdSe nanoparticles. Chem. Mater., 22, 5251–5257.Google Scholar
[20] Giblin, J. and Kuno, M. 2010. Nanostructure absorption: a comparative study of nanowire and colloidal quantum dot absorption cross sections. J. Phys. Chem. Lett., 1, 3340–3348.Google Scholar
[21] Katz, D., Wizansky, T., Millo, O. et al. 2002. Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys. Rev. Lett., 89, 086801-1–086801-4.Google Scholar
[22] Talaat, H., Abdallah, T., Mohamed, M. B., Negmc, S. and El-Sayed, M. A. 2009. The sensitivity of the energy band gap to changes in the dimensions of the CdSe quantum rods at room temperature: STM and theoretical studies. Chem. Phys. Lett., 473, 288–292.Google Scholar
[23] Bartnik, A. C., Efros, Al. L., Koh, W.-K., Murray, C. B. and Wise, F. W. 2010. Electronic states and optical properties of PbSe nanorods and nanowiresPhys. Rev.B, 82 195313-1–195313-16.Google Scholar
[24] Tavenner-Kruger, S., Young-Shin, Park, Lonergan, M., Woggon, U. and Wang, H. 2006. Zero-phonon linewidth in CdSe/ZnS core/shell nanorods. Nano Lett., 6, 2154–2157Google Scholar
[25] Palinginis, P., Tavenner, S., Lonergan, M. and Wang, H. 2003. Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals. Phys. Rev.B, 67, 201307-1–201307-4.Google Scholar
[26] Littleton, B. N., Fernee, M. J., Gomez, D. E., Mulvaney, P. and Rubinsztein-Dunlop, H. 2009. High-resolution line width measurement of single CdSe nanocrystals at long time scales. J. Phys. Chem. Lett., 113, 5345–5348.Google Scholar
[27] Chamarro, M., Gourdon, C., Lavallard, P., Lublinskaya, O. and Ekimov, A. I. 1996. Enhancement of electron–hole exchange interaction in CdSe nanocrystals: A quantum confinement effect. Phys. Rev.B, 53, 1336–1342.Google Scholar
[28] Efros, A. L., Rosen, M., Kuno, M. et al. 1996. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev.B, 54, 4843–4856.Google Scholar
[29] Li, J and Wang, L. W. 2003. Shape effects on electronic states of nanocrystals. Nano Lett., 3 1357–1363.Google Scholar
[30] LeThomas, N., Herz, E., Schops, O. and Woggon, U. 2005. Exciton fine structure in single CdSe nanorods. Phys. Rev. Lett., 94, 016803-1–016803-4.Google Scholar
[31] Shabaev, A. and Efros, Al. L. 2004. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett., 4, 1821–1025.Google Scholar
[32] Protasenko, V., Bacinello, D. and Kuno, M. 2006. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires. J. Phys. Chem. B, 110, 25322–25331.Google Scholar
[33] Shaviv, E., Salant, A. and Banin, U. 2009. Size dependence of molar absorption coefficients of CdSe semiconductor quantum rods. ChemPhysChem, 10, 1028–1031.Google Scholar
[34] Kim, J., Wong, C. Y. and Scholes, G. D. 2009. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Acc. Chem. Res., 42, 1037–1046.Google Scholar
[35] Scholes, G. D., Kim, J., Wong, C. Y. et al. 2006. Nanocrystal shape and the mechanism of exciton spin relaxation. Nano Lett., 6, 1765–1771.Google Scholar
[36] Mokari, T., Rothenberg, E., Popov, I., Costi, R. and Banin, U. 2004. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science, 304, 1787–1790.Google Scholar
[37] Saunders, A. E., Popov, I. and Banin, U. 2006. Synthesis of hybrid CdS-Au colloidal nanostructures. J. Phys. Chem.B, 110, 25421–25429.Google Scholar
[38] Borys, N. J.,Walter, M. J., Huang, J., Talapin, D.V. and Lupton, J. M. 2010. The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals. Science, 330, 1371–1374.Google Scholar
[39] Panzer, M. J., Aidala, K. E., Anikeeva, P. O. et al. 2010. Nanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films. Nano Lett., 10, 2421–2426.Google Scholar
[40] Mauser, C., Da Como, E., Baldauf, J. et al. 2010. Spatio-temporal dynamics of coupled electrons and holes in nanosize CdSe-CdS semiconductor tetrapods. Phys. Rev.B, 82, 081306-1–081306-4.Google Scholar
[41] Lutich, A. A., Mauser, C., Da Como, E. et al. 2010. Multiexcitonic dual emission in CdSe/CdS tetrapods and nanorods. Nano Lett., 10, 4646–4650.Google Scholar
[42] Pelton, M., Aizpurua, J. and Bryant, G. 2008. Metal–nanoparticle plasmonics. Laser and Photon. Rev., 2, 136–159.Google Scholar
[43] Kelly, K. L., Coronado, E., Zhao, L. L. and Schatz, G. C. 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem.B, 107, 668–677.Google Scholar
[44] Prodan, E., Radloff, C., Halas, N. J. and Nordlander, P. 2003. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419–422.Google Scholar
[45] Nordlander, P., Oubre, C., Prodan, E., Li, K. and Stockman, M. I. 2004. Plasmon hybridizaton in nanoparticle dimers. Nano Lett., 4, 899–903.Google Scholar
[46] Jain, P. K., Eustis, S. and El-Sayed, M. A. 2006. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B, 110, 18243–18253.Google Scholar
[47] Wang, H., Brandl, D. W., Nordlander, P.Halas, N. J. 2007. Plasmonic nanostructures: artificial molecules. Acc. Chem. Res., 40, 53–62.Google Scholar
[48] Jain, P. K. and El-Sayed, A. M. 2010. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 487, 153–164.Google Scholar
[49] Sheikholeslami, S., Young-wook, Jun, Jain, P. K. and Alivisatos, A. P. 2010. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett., 10 2655–2660.Google Scholar
[50] Wang, K. and Mittleman, D. M. 2006. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Phys. Rev. Lett., 96, 157401.Google Scholar
[51] Weber, W. H., and Ford, G. W. 1981. Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation. Opt. Lett., 6, 122–124.Google Scholar
[52] Nagpal, P., Lindquist, N., Oh, S. and Norris, D. J. 2009. Ultrasmooth patterned metals for plasmonics and metamaterials. Science, 325, 594–597Google Scholar
[53] Ford, G. W. and Weber, W. H. 1984. Electromagnetic interactions of molecules with metals surfaces. Phys. Reports, 113, 195–278.Google Scholar
[54] Drexhage, K. H. 1970. Influence of a dielectric interface on fluorescence decay time. J. Luminescence, 1–2, 693–701.Google Scholar
[55] Chance, R. R.Prock, A. and Silbey, R. 1978. In: Prigogine, I. and Rice, S. A. (eds.), Advances in Chemical Physics XXXVII. NewYork: Wiley.
[56] Weber, W. H. and Eagen, C. F. 1979. Energy tranfer from an excited duy molecule to the surface plasmons of an adjacent metal. Opt. Lett., 4, 236–238.Google Scholar
[57] Ueda, A., Tayagaki, T. and Kanemitsu, Y. 2008. Energy transfer from semiconductor nanocrystal monolayers to metals surfaces revealed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett., 92, 133118.Google Scholar
[58] Ditlbacher, H., Hohenau, A., Wagner, D. et al. 2005. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett., 95, 257403.Google Scholar
[59] Allione, M., Temnov, V. V., Fedutik, Y., Woggon, U. and Artemyev, M. V. 2008. Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities. Nano. Lett., 8, 31.Google Scholar
[60] Fedutik, Y., Temnov, V. V., Woggon, U., Ustinovich, E. and Artemyev, M. V. 2007a. Exciton–plasmon interaction in a composite metal–insulator-semiconductor nanowire system. J. Am. Chem. Soc., 129, 14939.Google Scholar
[61] Fedutik, Y., Temnov, V. V., Schöps, O., Woggon, U., and Artemyev, M. V. 2007b. Exciton–plasmon-photon conversion in plasmonic nanostructures. Phys. Rev. Lett., 99, 136802.Google Scholar
[62] Kulakovich, O., Strekal, N., Yaroshevich, A. et al. 2002. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano. Lett., 2, 1449–1452.Google Scholar
[63] Okamoto, K., Vyawahare, S. and Scherer, A. 2006. Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals. J. Opt. Soc. Am.B, 23, 1674–1678.Google Scholar
[64] Ito, Y., Matsuda, K. and Kanemitsu, Y. 2007. Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces. Phys. Rev.B, 75, 033309.Google Scholar
[65] Anger, P., Bharadwaj, P. and Novotny, L. 2006. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002.Google Scholar
[66] Matsuda, K., Ito, Y. and Kanemitsu, Y. 2008. Photoluminescence enhancement and quenching of single CdSe/ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer. Appl. Phys. Lett., 92, 211911.Google Scholar
[67] Zhai, Y. Y., Song, H., Zhou, Z. K., Li, M. and Hao, Z. H. 2008. Enhanced radiative emission rate of CdSe/ZnS quantum dots on semi-continuous gold films. Eur. Phys. J. Appl. Phys., 42, 109–112.Google Scholar
[68] Wu, X., Sun, Y. and Pelton, M. 2009. Recombination rates for single colloidal quantum dots near a smooth metal film. Phys. Chem. Chem. Phys., 11, 5867–5870.Google Scholar
[69] Ma, X., Tan, H., Kipp, T. and Mews, A. 2010. Fluorescence enhancement, blinking supression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles. Nano. Lett., 10, 4166–4174.Google Scholar
[70] Pockland, I., Brillante, A. and Mobius, D. 1982. Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals. J. Chem. Phys., 77, 6289–6295.Google Scholar
[71] Gomez, D. E., Vernon, K. C., Mulvaney, P. and Davis, T. J. 2010b. Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. Nano. Lett., 10, 4166–4174.Google Scholar
[72] Gomez, D. E., Vernon, K. C., Mulvaney, P. and Davis, T. J. 2010a. Coherent superposition of exciton states in quantum dots induced by surface plasmons. Appl. Phys. Lett., 96, 073108.Google Scholar
[73] Pacifici, D., Lezec, H. J. and Atwater, H. A. 2007. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Phot., 1, 402–406.Google Scholar
[74] Bonifacio, R. and Morawitz, H. 1976. Cooperative emission of an excited molecular monolayer into surface plasmons. Phys. Rev. Lett., 36, 1559–1562.Google Scholar
[75] Bergman, D. J. and Stockman, M. I. 2003. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett., 90, 027402.Google Scholar
[76] Temnov, V. V. and Woggon, U. 2005. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity. Phys. Rev. Lett., 95, 243602.Google Scholar
[77] Chang, D. E., Sorensen, A. S., Hemmer, P. R. and Lukin, M. D. 2006. Quantum optics with surface plasmons. Phys. Rev. Lett., 97, 053002.Google Scholar
[78] Akimov, A. V., Mukherjee, A., Yu, C. L. et al. 2007. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450, 402–406.Google Scholar
[79] Noginov, M. A., Zhu, G., Belrgave, A. M. et al. 2009. Demonstration of a spaser-based nanolaser. Nature, 460, 1110–1113.Google Scholar
[80] Kolesov, R., Grotz, B., Balasubramanian, G. et al. 2009. Wave–particle duality of single surface plasmon polaritons. Nature Phys., 5, 470–474.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×