Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T04:06:32.130Z Has data issue: false hasContentIssue false

10 - Quantum computing

Published online by Cambridge University Press:  05 April 2013

Scott Aaronson
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Alright, so now we've got this beautiful theory of quantum mechanics, and the possibly-even-more-beautiful theory of computational complexity. Clearly, with two theories this beautiful, you can't just let them stay single – you have to set them up, see if they hit it off, etc.

And that brings us to the class BQP: Bounded-Error Quantum Polynomial-Time. We talked in Chapter 7 about BPP, or Bounded-Error Probabilistic Polynomial-Time. Informally, BPP is the class of computational problems that are efficiently solvable in the physical world if classical physics is true. Now we ask, what problems are efficiently solvable in the physical world if (as seems more likely) quantum physics is true?

To me it’s sort of astounding that it took until the 1990s for anyone to really seriously ask this question, given that all the tools for asking it were in place by the 1960s or even earlier. It makes you wonder, what similarly obvious questions are there today that no one’s asking?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. M. Adleman, J. DeMarrais, and M.-D. A. Huang, Quantum Computability, SIAM Journal on Computing, 26:5 (1997), 1524–1540.
D. R. Simon, On the Power of Quantum Cryptography, Proceedings of IEEE Symposium on Foundations of Computer Science, (1994), 116–123
Proceedings of Annual ACM Symposium on Theory of Computing (2010), pp. 141–50.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Quantum computing
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Quantum computing
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Quantum computing
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.011
Available formats
×