Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-16T05:02:49.515Z Has data issue: false hasContentIssue false

46 - Foundational static analysis

from VII - Applications

Published online by Cambridge University Press:  05 August 2014

Andrew W. Appel
Affiliation:
Princeton University, New Jersey
Robert Dockins
Affiliation:
Portland State University
Aquinas Hobor
Affiliation:
National University of Singapore
Lennart Beringer
Affiliation:
Princeton University, New Jersey
Josiah Dodds
Affiliation:
Princeton University, New Jersey
Gordon Stewart
Affiliation:
Princeton University, New Jersey
Sandrine Blazy
Affiliation:
Université de Rennes I, France
Xavier Leroy
Affiliation:
Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt
Get access

Summary

A static analysis is an algorithm that checks (or calculates) invariants of a program based on its syntactic (static) structure, in contrast to a dynamic analysis which observes properties of actual program executions. Static analysis can tell us properties of all possible executions, while dynamic analysis can only observe executions on particular inputs.

A sound static analysis is one with a proof that any invariants checked by the analysis will actually hold on all executions. A foundationally sound analysis is one where the soundness proof is (ideally) machine-checked, (ideally) with respect to the machine-language instruction-set architecture specification—not the source language—and (ideally) with no axioms other than the foundations of logic and the ISA specification.

Some of the first foundationally sound static analyses were proof-carrying code systems of the early 21st century [5, 45, 35, 3]. It was considered impractical (at that time) to prove the correctness of compilers, so these proof-carrying systems transformed source-language typechecking (or Hoare logic [14]) phase by phase through the compilation, into an assembly-language Hoare logic.

With the existence of foundationally correct compilers such as CompCert, instead of proof-carrying code we can prove the soundness of a static analysis from the source-language semantics, and compose that proof with the compiler-correctness proof. See for example the value analysis using abstract interpretation by Blazy et al. [22]

Some kinds of static analysis may be easier to prove sound with respect to a program logic than directly from the operational semantics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Foundational static analysis
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.054
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Foundational static analysis
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.054
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Foundational static analysis
  • Andrew W. Appel, Princeton University, New Jersey
  • Book: Program Logics for Certified Compilers
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107256552.054
Available formats
×