Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T02:20:54.741Z Has data issue: false hasContentIssue false

9 - Quantum emitters

Published online by Cambridge University Press:  05 June 2012

Lukas Novotny
Affiliation:
University of Rochester, New York
Bert Hecht
Affiliation:
Universität Basel, Switzerland
Get access

Summary

The interaction of light with nanometer-sized structures is at the core of nano-optics. It is obvious that as the particles become smaller and smaller the laws of quantum mechanics will become apparent in their interaction with light. In this limit, continuous scattering and absorption of light will be supplemented or replaced by resonant interactions if the photon energy hits the energy difference of discrete internal (electronic) energy levels. In atoms, molecules and nanoparticles, like semiconductor nanocrystals and other “quantum confined” systems, these resonances are found at optical frequencies. Due to the resonant character, the light–matter interaction can often be approximated by treating the quantum system as an effective two-level system, i.e. by considering only those two (electronic) levels whose difference in energy is close to the interacting photon energy ħω0.

In this chapter we consider single-quantum systems that are fixed in space, either by deposition to a surface or by being embedded into a solid matrix. The material to be covered should familiarize the reader with single-photon emitters and with concepts developed in the field of quantum optics. While various theoretical aspects related to the fields emitted by a quantum system have been discussed in Chapter 8, the current chapter focuses more on the nature of the quantum system itself. We adopt a rather practical perspective since more rigorous accounts can be found elsewhere (see e.g. [1–4]).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Quantum emitters
  • Lukas Novotny, University of Rochester, New York, Bert Hecht, Universität Basel, Switzerland
  • Book: Principles of Nano-Optics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813535.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Quantum emitters
  • Lukas Novotny, University of Rochester, New York, Bert Hecht, Universität Basel, Switzerland
  • Book: Principles of Nano-Optics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813535.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Quantum emitters
  • Lukas Novotny, University of Rochester, New York, Bert Hecht, Universität Basel, Switzerland
  • Book: Principles of Nano-Optics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813535.010
Available formats
×