Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-30T10:59:43.317Z Has data issue: false hasContentIssue false

Section 4 - Insemination/ICSI

Published online by Cambridge University Press:  11 May 2017

Markus H. M. Montag
Affiliation:
ilabcomm GmbH, St Augustin, Germany
Dean E. Morbeck
Affiliation:
Fertility Associates, New Zealand
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Principles of IVF Laboratory Practice
Optimizing Performance and Outcomes
, pp. 145 - 180
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M. and De Kruif, A. Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilization. Mol Reprod & Dev 2002; 61:414–24.CrossRefGoogle ScholarPubMed
McCulloh, D. H., Goorbarry, J., Shah, S. and Ahmad, K. Oocyte lysis following intracytoplasmic sperm injection: association with measures of oocyte quality and technician performance. J Reprod Stem Cell Biotech 2011; 2(1):4654.Google Scholar
World Health Organization (WHO). Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction (4th edn.) (Cambridge University Press, 2004).Google Scholar
Keegan, B. R., Barton, S., Sanchez, S., Berkeley, A. S., Krey, L. C. et al. Isolated teratozoospermia does not affect in vitro fertilization outcome and is not an indication for intracytoplasmic sperm injection. Fertil Steril 2007; 88(6):1583–8.CrossRefGoogle Scholar
Gianaroli, L., Magli, M. C., Ferraretti, A. P., Fiorentino, A., Tosti, E. et al. Reducing the time of sperm-oocyte interaction in human in-vitro fertilization improves the implantation rate. Hum Reprod 1996; 11:166–71.CrossRefGoogle ScholarPubMed
Lin, S.-P., Lee, R. K.-K., Su, J.-T., Lin, M.-H. and Hwu, Y.-M. The effects of brief gamete co-incubation in human in vitro fertilization J Assist Reprod Genet 2000; 17:344–8.Google Scholar

References

Huang, Z., Li, J., Wang, L., Yan, J., Shi, Y. et al. Brief co-incubation of sperm and oocytes for in vitro fertilization techniques. Cochrane Database Syst Rev 2013; 4:CD009391.Google Scholar
Oehninger, S., Mahony, M., Ozgur, K., Kolm, P., Kruger, T. et al. Clinical significance of human sperm-zona pellucida binding. Fertil Steril 1997; 67:1121–7.CrossRefGoogle ScholarPubMed
Saleh, R. A. and Agarwal, A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl 2002; 23:737–52.CrossRefGoogle ScholarPubMed
Aitken, R. J., Buckingham, D., West, K., Wu, F. C., Zikopoulos, K. et al. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil 1992; 94:451–62.Google Scholar
Gavella, M. and Lipovac, V. NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl 1992; 28:135–41.CrossRefGoogle ScholarPubMed
Quinn, P., Lydic,. M. L, Ho, . M, Bastuba, M., Hendee, F. et al. Confirmation of the beneficial effects of brief coincubation of gametes in human in vitro fertilization. Fertil Steril 1998; 69:399402.Google Scholar
Dirnfeld, M., Bider, D., Koifman, M., Calderon, I. and Abramovici, H. Shortened exposure of oocytes to spermatozoa improves in-vitro fertilization outcome: a prospective, randomized, controlled study. Hum Reprod 1999; 14:2562–4.Google Scholar
Dumoulin, J. C., Bras, M., Land, J. A., Pieters, M. H., Enginsu, M. E. et al. Effect of the number of inseminated spermatozoa on subsequent human and mouse embryonic development in vitro. Hum Reprod 1992; 7:1010–3.CrossRefGoogle ScholarPubMed
Coskun, S., Roca, G. L., Elnour, A. M., al Mayman, H., Hollanders, J. M. et al. Effects of reducing insemination time in human in vitro fertilization and embryo development by using sibling oocytes. J Assist Reprod Genet 1998; 15:605–8.Google Scholar
Dirnfeld, M., Shiloh, H., Bider, D., Harari, E., Koifman, M. et al. A prospective randomized controlled study of the effect of short coincubation of gametes during insemination on zona pellucida thickness. Gynecol Endocrinol 2003; 17:397403.CrossRefGoogle ScholarPubMed
Gianaroli, L., Cristina Magli, M., Ferraretti, A. P., Fiorentino, A., Tosti, E. et al. Reducing the time of sperm-oocyte interaction in human in-vitro fertilization improves the implantation rate. Hum Reprod 1996; 11:166–71.CrossRefGoogle ScholarPubMed
Kattera, S. and Chen, C. Short coincubation of gametes in in vitro fertilization improves implantation and pregnancy rates: a prospective, randomized, controlled study. Fertil Steril 2003; 80:1017–21.CrossRefGoogle ScholarPubMed
Xiong, S., Han, W., Liu, J. X., Zhang, X. D., Liu, W. W., et al. Effects of cumulus cells removal after 6 h co-incubation of gametes on the outcomes of human IVF. J Assist Reprod Genet 2011; 28:1205–11.Google Scholar

References

Cohen, J., Edwards, R. G., Fehilly, C. B., Fishel, S. B., Hewitt, J. et al. Treatment of male infertility by in vitro fertilization: factors affecting fertilization and pregnancy. Acta Eur Fertil 1984; 15:455–65.Google Scholar
Nyboe Andersen, A., Carlsen, E. and Loft, A. Trends in the use of intracytoplasmatic sperm injection marked variability between countries. Hum Reprod Update 2008; 14:593604.Google Scholar
Mansour, R., Ishihara, O., Adamson, G. D., Dyer, S., de Mouzon, J. et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2006. Hum Reprod 2014; 29:1536–51.CrossRefGoogle ScholarPubMed
Fishel, S., Aslam, I., Lisi, F., Rinaldi, L., Timson, J. et al. Should ICSI be the treatment of choice for all cases of in-vitro conception? Hum Reprod 2000; 15:1278–83.CrossRefGoogle ScholarPubMed
Aboulghar, M. A., Mansour, R. T., Serour, G. I., Sattar, M. A. and Amin, Y. M. Intracytoplasmic sperm injection and conventional in vitro fertilization for sibling oocytes in cases of unexplained infertility and borderline semen. J Assist Reprod Genet 1996; 13:3842.CrossRefGoogle ScholarPubMed
Palermo, G. D., Neri, Q. V., Monahan, D., Kocent, J. and Rosenwaks, Z. Development and current applications of assisted fertilization. Fertil Steril 2012; 97:248–59.CrossRefGoogle ScholarPubMed
Moomjy, M., Sills, E. S., Rosenwaks, Z. and Palermo, G. D. Implications of complete fertilization failure after intracytoplasmic sperm injection for subsequent fertilization and reproductive outcome. Hum Reprod 1998; 13:2212–6.CrossRefGoogle ScholarPubMed
Van Steirteghem, A. C., Nagy, Z., Joris, H., Liu, J., Staessen, C. et al. High fertilization and implantation rates after intracytoplasmic sperm injection. Hum Reprod 1993; 8:1061–6.Google Scholar
Nagy, Z. P., Liu, J., Joris, H., Verheyen, G., Tournaye, H. et al. The result of intracytoplasmic sperm injection is not related to any of the three basic sperm parameters. Hum Reprod 1995; 10:1123–9.CrossRefGoogle ScholarPubMed
Tournaye, H., Liu, J., Nagy, Z., Verheyen, G., Van Steirteghem, A. et al. The use of testicular sperm for intracytoplasmic sperm injection in patients with necrozoospermia. Fertil Steril 1996; 66:331–4.Google Scholar
Nagy, Z. P., Verheyen, G., Liu, J., Joris, H., Janssenswillen, C. et al. Results of 55 intracytoplasmic sperm injection cycles in the treatment of male-immunological infertility. Hum Reprod 1995; 10:1775–80.Google Scholar
Liu, J., Nagy, Z., Joris, H., Tournaye, H., Devroey, P. et al. Successful fertilization and establishment of pregnancies after intracytoplasmic sperm injection in patients with globozoospermia. Hum Reprod 1995; 10:626–9.Google Scholar
Lundin, K., Sjogren, A., Nilsson, L. and Hamberger, L. Fertilization and pregnancy after intracytoplasmic microinjection of acrosomeless spermatozoa. Fertil Steril 1994; 62:1266–7.CrossRefGoogle ScholarPubMed
Bourne, H., Richings, N., Harari, O., Watkins, W., Speirs, A. L. et al. The use of intracytoplasmic sperm injection for the treatment of severe and extreme male infertility. Reprod Fertil & Dev 1995; 7:237–45.Google Scholar
Neri, Q. V., Lee, B., Rosenwaks, Z., Machaca, K. and Palermo, G. D. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium 2014; 55:2437.Google Scholar
Moomjy, M., Colombero, L. T., Veeck, L. L., Rosenwaks, Z. and Palermo, G. D. Sperm integrity is critical for normal mitotic division and early embryonic development. Mol Hum Reprod 1999; 5:836–44.Google Scholar
Maggiulli, R., Neri, Q. V., Monahan, D., Hu, J., Takeuchi, T. et al. What to do when ICSI fails. Syst Biol Reprod Med 2010; 56:376–87.CrossRefGoogle Scholar
Palermo, G. D., Cohen, J., Alikani, M., Adler, A. and Rosenwaks, Z. Intracytoplasmic sperm injection: a novel treatment for all forms of male factor infertility. Fertil Steril 1995; 63:1231–40.CrossRefGoogle ScholarPubMed
World Health Organization (WHO). Laboratory Manual for the Examination and Processing of Human Semen (5th edn.) (Cambridge University Press, 2010).Google Scholar
Pereira, N., Reichman, D. E., Goldschlag, D. E., Lekovich, J. P. and Rosenwaks, Z. Impact of elevated peak serum estradiol levels during controlled ovarian hyperstimulation on the birth weight of term singletons from fresh IVF-ET cycles. J Assist Reprod Genet 2015; 32:527–32.Google Scholar
Huang, J. Y. and Rosenwaks, Z. In vitro fertilisation treatment and factors affecting success. Best Pract Res Clin Obstet Gynaecol 2012; 26:777–88.CrossRefGoogle ScholarPubMed
Palermo, G. D., Neri, Q. V., Schlegel, P. N. and Rosenwaks, Z. Intracytoplasmic sperm injection (ICSI) in extreme cases of male infertility. PLoS One 2014; 9:e113671.Google Scholar
Palermo, G. D., Schlegel, P. N., Colombero, L. T., Zaninovic, N., Moy, F. et al. Aggressive sperm immobilization prior to intracytoplasmic sperm injection with immature spermatozoa improves fertilization and pregnancy rates. Hum Reprod 1996; 11:1023–9.Google Scholar

References

Bartoov, B., Berkovitz, A. and Eltes, F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med 2001; 345:1067–8.Google Scholar
Vanderzwalmen, P., Hiemer, A., Rubner, P., Bach, M., Neyer, A. et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online 2008; 17:617–27.CrossRefGoogle ScholarPubMed
Neyer, A., Zintz, M., Stecher, A., Bach, M., Wirleitner, B. et al. The impact of paternal factors on cleavage stage and blastocyst development analyzed by time-lapse imaging: a retrospective observational study J Assist Reprod Genet 2015; 32:1607–14.Google Scholar
Boitrelle, F., Albert, M., Petit, J.-M., Ferfouri, F., Wainer, R. et al. Small human sperm vacuoles observed under high magnification are pocket-like nuclear concavities linked to chromatin condensation failure. Reprod Biomed Online 2013; 27:201–11.CrossRefGoogle ScholarPubMed
Cassuto, N. G., Hazout, A., Hammoud, I., Balet, R., Bouret, D. et al. Correlation between DNA defect and sperm-head morphology. Reprod Biomed Online 2012; 24, 211–18.CrossRefGoogle ScholarPubMed
Garolla, A., Sartini, B., Cosci, I., Pizzol, D., Ghezzi, M. et al. Molecular karyotyping of single sperm with nuclear vacuoles identifies more chromosomal abnormalities in patients with testiculopathy than fertile controls: implications for ICSI. Hum Reprod 2015; 30:2493–500.CrossRefGoogle ScholarPubMed
Cassuto, G., Montjean, D., Siffroi, J. P., Bouret, D., Marzouk, F. et al. Different levels of DNA methylation detected in human sperms after morphological selection using high magnification microscopy. Biomed Res Int 2016; article ID 6372171, 1–7.CrossRefGoogle Scholar
Vanderzwalmen, P., Bach, M., Gaspard, O., Lejeune, B., Neyer, A. et al. Motile-sperm organelle-morphology examination and intracytoplasmic morphologically selected sperm injection: clinical and technical aspects. In A Practical Guide to Selecting Gametes and Embryos, ed. Montag, M. (pp. 5980 ) (Boca Raton, FL: CRC Press, 2014).Google Scholar
Cassuto, G., Hazout, A., Bouret, D., Balet, R., Larue, L. et al. Low birth defects by deselecting abnormal spermatozoa before ICSI. Reprod Biomed Online 2014; 28:4753.Google Scholar

References

Oliveira, N. M., Sanchez, R. V., Fiesta, S. R. et al. Pregnancy with frozen-thawed and fresh testicular biopsy after motile and immotile sperm microinjection, using the mechanical touch technique to assess viability. Hum Reprod 2004; 19:262–5.Google Scholar
Jeyendran, R. S., van der Ven, H. H., Perez-Pelaez, M., Crabo, B. G. and Zaneveld, L. J. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to others emen characteristics. J Reprod Fertil 1984; 70:219–28.Google Scholar
Ved, S., Montag, M., Schmutzler, A., Prietl, G., Haidl, G. et al. Pregnancy following intracytoplasmic sperm injection of immotile spermatozoa selected by the hypo-osmotic swelling-test: a case report. Andrologia 1997; 29:241–2.Google Scholar
Sallam, H., Farrag, A., Agameya, A., Ezzeldin, F., Eid, A. et al. The use of a modified hypo-osmotic swelling test for the selection of viable ejaculated and testicular immotile spermatozoa in ICSI. Hum Reprod 2001; 16:272–6.Google Scholar
Montag, M., Rink, K., Delacrétaz, G. and van der Ven, H. Laser-induced immobilization and plasma membrane permeabilization in human spermatozoa. Hum Reprod 2000; 15:846–52.CrossRefGoogle ScholarPubMed
Aktan, T. M., Montag, M., Duman, S., Gorkemli, H., Rink, K, Yurdakul, T. Use of a laser to detect viable but immotile spermatozoa. Andrologia 2004; 36:366–9.Google Scholar
Nordhoff, V., Schüring, A. N., Krallmann, C., Zitzmann, M., Schlatt, S. et al. Optimizing TESE-ICSI by laser-assisted selection of immotile spermatozoa and polarization microscopy for selection of oocytes. Andrology 2013; 1:6774.CrossRefGoogle ScholarPubMed
Yovich, J. L. Pentoxifylline: actions and applications in assisted reproduction. Hum Reprod 1993; 8:1786–91.Google Scholar
Ebner, T., Tews, G., Mayer, R. B., Ziehr, S., Arzt, W. et al. Pharmacological stimulation of sperm motility in frozen and thawed testicular sperm using the dimethylxanthine theophylline. Fertil Steril 2011; 96:1331–6.Google Scholar

References

Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J. et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 2002; 129:3533–44.Google Scholar
Berridge, M. J. Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 2009; 1793:933–40.Google Scholar
Ozil, J. P. and Huneau, D. Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development 2001; 128:917–28.Google Scholar
Montag, M., Köster, M., van der Ven, K., Bohlen, U. and van der Ven, H. The benefit of artificial oocyte activation is dependent on the fertilization rate in a previous treatment cycle. Reprod Biomed Online 2012; 24:521–6.Google Scholar
Vanden Meerschaut, F., Nikiforaki, D., Heindryckx, B. and De Sutter, P. Assisted oocyte activation following ICSI fertilization failure. Reprod Biomed Online 2014; 28:560–71.Google Scholar
Ebner, T., Köster, M., Shebl, O., Moser, M., Van der Ven, H. et al. Application of a ready-to-use calcium ionophore increases rates of fertilization and pregnancy in severe male factor infertility. Fertil Steril 2012; 98:1432–7.Google Scholar
Ebner, T. and Montag, M. Oocyte Activation Study Group. Live birth after artificial oocyte activation using a ready-to-use ionophore: a prospective multicentre study. Reprod Biomed Online 2015; 30:359–65.Google Scholar
Ebner, T., Oppelt, P., Wöber, M., Staples, P., Mayer, R. B. et al. Treatment with Ca2+ ionophore improves embryo development and outcome in cases with previous developmental problems: a prospective multicenter study. Hum Reprod 2015; 30:97102.Google Scholar
Ebner, T., Moser, M., Sommergruber, M., Jesacher, K. and Tews, G. Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum Reprod 2004; 19: 1837–41.Google Scholar
Baltaci, V., Ayvaz, O. U., Unsal, E., Aktaş, Y., Baltaci, A. et al. The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure. Fertil Steril 2010; 94: 900–4.Google Scholar
Kashir, J., Heindryckx, B., Jones, C., De Sutter, P., Parrington, J. et al. Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 2010; 16:690703.Google Scholar
Heindryckx, B., De Gheselle, S., Gerris, J., Dhont, M. and De Sutter, P. Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection. Reprod Biomed Online 2008; 17:662–8.Google Scholar
Markoulaki, S., Matson, S., Abbott, A. L. and Ducibella, T. Oscillatory CaMKII activity in mouse egg activation. Dev Biol 2003; 258:464–74.CrossRefGoogle ScholarPubMed
Ebner, T. and Montag, M. Artificial oocyte activation: evidence for clinical readiness. Reprod Biomed Online 2016; 32:271–3.Google Scholar
Ebner, T., Shebl, O. and Parmegiani, L. Oldie but goldie or opening Pandora´s box? Curr Trends Clin Embryol 2015; 2:149–52.Google Scholar
Santella, L. and Dale, B. Assisted yes, but where do we draw the line? Reprod Biomed Online 2015; 31:476–8.Google Scholar
van Blerkom, J., Cohen, J. and Johnson, M. A plea for caution and more research in the ‘experimental’ use of ionophores in ICSI. Reprod Biomed Online 2015; 30:323–4.Google Scholar
Kim, J. W., Yang, S. H., Yoon, S. H., Kim, S. D., Jung, J. H. et al. Successful pregnancy and delivery after ICSI with artificial oocyte activation by calcium ionophore in in-vitro matured oocytes: a case report. Reprod Biomed Online 2015; 30:373–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×