Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T17:22:28.632Z Has data issue: false hasContentIssue false

4 - Population and Greenhouse Gas Emissions

Published online by Cambridge University Press:  23 December 2009

Brian C. O'Neill
Affiliation:
Brown University, Rhode Island
F. Landis MacKellar
Affiliation:
International Institute for Applied Systems Analysis, Austria
Wolfgang Lutz
Affiliation:
International Institute for Applied Systems Analysis, Austria
Get access

Summary

As discussed in Chapter 1, if greenhouse gas (GHG) emissions are not constrained, the global average temperature is likely to rise 1–3.5 degrees Celsius (°C) by 2100. About half that range is due to uncertainty in the future unconstrained emissions path (i.e., assuming no policies aimed at reducing emissions are put in place), and the other half is due to uncertainty in the response of the climate system. Future emissions are likely to be an even more important determinant of future climate change, however, since the range of potential emission paths is considerably widened by taking into account policies that could reduce emission rates.

Broadly speaking, demographic change, changes in economic output, and changes in the GHG intensity of the global economy are the forces driving GHG emissions. Each of these is, in turn, influenced by a number of important indirect variables. Regarding the role of demographic change, Chapter 2 demonstrates that a wide range of population paths is possible and that the primary determinant of future population size and structure will be trends in fertility rates.

Taken together, these observations suggest that by slowing population growth, policies that tend to reduce fertility could contribute to reducing emissions and averting climate change. In this chapter we address the questions of how much such policies might reduce GHG emissions and how these reductions would compare with reductions achievable through other means. We discuss the human activities that give rise to GHG emissions and review studies that have used demographic impact identities based on the Impact–Population–Affluence–Technology (I=PAT) equation to apportion responsibility for emission trends among driving forces.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×