Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T15:40:02.359Z Has data issue: false hasContentIssue false

14 - Stellar magnetic fields

from III - Stars and their environment

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelman, S. J., Gulliver, A. F., Kochukhov, O. P., and Ryabchikova, T. A. (2002). The variability of the Hg II λ3984 line of the mercury–manganese star α Andromedae. The Astrophysical Journal, 575, 449460.CrossRefGoogle Scholar
Alecian, G., Stift, M. J., and Dorfi, E. A. (2011). Time-dependent diffusion in stellar atmospheres. Monthly Notices of the Royal Astronomical Society, 418, 986997.CrossRefGoogle Scholar
Alecian, E., Wade, G. A., Catala, C.et al. (2013). A high-resolution spectropolarimetric survey of Herbig Ae/Be stars – I. Observations and measurements. Monthly Notices of the Royal Astronomical Society, 429, 10011026.CrossRefGoogle Scholar
Anderson, R. J., Reiners, A., and Solanki, S. K. (2010). On detectability of Zeeman broadening in optical spectra of F- and G-dwarfs. Astronomy and Astrophysics, 522, A81 (17pp).CrossRefGoogle Scholar
Angel, J. R. P. and Landstreet, J. D. (1970). Magnetic observations of white dwarfs. The Astrophysical Journal, 160, L147L152.CrossRefGoogle Scholar
Angel, J. R. P. and Landstreet, J. D. (1971). Discovery of periodic variations in the circular polarization of the white dwarf G195-19. The Astrophysical Journal, 165, L71L75.CrossRefGoogle Scholar
Angel, J. R. P., Borra, E., and Landstreet, J. D. (1981). The magnetic fields of white dwarfs. The Astrophysical Journal Supplement Series, 45, 457474.CrossRefGoogle Scholar
Appenzeller, I., Fricke, K., Fürtig, W.et al. (1998). Successful commissioning of FORS1 − the first optical instrument on the VLT. Messenger, 94, 16.Google Scholar
Aurière, M., Wade, G. A., Silvester, J.et al. (2007). Weak magnetic fields in Ap/Bp stars: Evidence for a dipole field lower limit and a tentative interpretation of the magnetic dichotomy. Astronomy and Astrophysics, 475, 10531065.CrossRefGoogle Scholar
Aurière, M., Konstantinova-Antova, R., Petit, P.et al. (2008). EK Eridani: The tip of the iceberg of giants which have evolved from magnetic Ap. Astronomy and Astrophysics, 491, 499505.CrossRefGoogle Scholar
Aurière, M., Wade, G. A., Konstantinova-Antova, R.et al. (2009). Discovery of a weak magnetic field in the photosphere of the single giant Pollux. Astronomy and Astrophysics, 504, 231237.CrossRefGoogle Scholar
Babcock, H. W. (1947). Zeeman effect in stellar spectra. The Astrophysical Journal, 105, 105119.CrossRefGoogle Scholar
Babcock, H. W. (1951). The magnetically variable star HD 125248. The Astrophysical Journal, 114, 136.CrossRefGoogle Scholar
Babcock, H. W. (1958). A catalogue of magnetic stars. The Astrophysical Journal Supplement Series, 3, 141210.CrossRefGoogle Scholar
Babcock, H. W. (1960). The 30 kilogauss magnetic field of HD 215441. The Astrophysical Journal, 132, 521532.CrossRefGoogle Scholar
Bagnulo, S., Landi Degl’Innocenti, E., Landolfi, M., and Leroy, J. L. (1995). Linear polarimetry of AP stars. 3: A diagnostic method for the magnetic structure of rotating stars. Astronomy and Astrophysics, 295, 459470.Google Scholar
Bagnulo, S., Landi Degl’Innocenti, M., Landolfi, M., and Mathys, G. (2002a). A statistical analysis of the magnetic structure of CP stars. Astronomy and Astrophysics, 394, 10231037.CrossRefGoogle Scholar
Bagnulo, S., Szeifert, T., Wade, G. A., Landstreet, J. D., and Mathys, G. (2002b). Measuring magnetic fields of early-type stars with FORS1 at the VLT. Astronomy and Astrophysics, 389, 191201.CrossRefGoogle Scholar
Bagnulo, S., Landstreet, J. D., Mason, E.et al. (2006). Searching for links between magnetic fields and stellar evolution. I. A survey of magnetic fields in open cluster A- and B-type stars with FORS1. Astronomy and Astrophysics, 450, 777791.CrossRefGoogle Scholar
Bagnulo, S., Landolfi, M., Landstreet, J. D.et al. (2009). Stellar spectropolarimetry with retarder waveplate and beam splitter devices. Publications of the Astronomical Society of the Pacific, 121, 9931015.CrossRefGoogle Scholar
Bagnulo, S., Fossati, L., Kochukhov, O., and Landstreet, J. D. (2012). Magnetic field measurements and their uncertainties: The FORS1 legacy. Astronomy and Astrophysics, 538, A129 (22pp).CrossRefGoogle Scholar
Bagnulo, S., Landstreet, J. D., Fossati, L., and Kochukhov, O. (2013). The importance of non-photon noise in stellar spectropolarimetry. The spurious detection of a non-existing magnetic field in the A0 supergiant HD 92207. Astronomy and Astrophysics, 559, A103 (10pp).CrossRefGoogle Scholar
Balick, B. and Frank, A. (2002). Shapes and shaping of planetary nebulae. Annual Review of Astronomy and Astrophysics, 40, 439486.CrossRefGoogle Scholar
Basri, G., Marcy, G., and Valenti, J. A. (1992). Limits on the magnetic flux of pre-main-sequence stars. The Astrophysical Journal, 390, 622633.CrossRefGoogle Scholar
Bohlender, D. A. and Landstreet, J. D. (1990). A search for magnetic fields in Lambda Bootis stars. Monthly Notices of the Royal Astronomical Society, 247, 606610.Google Scholar
Bohlender, D. A., Landstreet, J. D., Brown, D. N., and Thompson, I. B. (1987). Magnetic field measurements of helium-strong stars. The Astrophysical Journal, 323, 325337.CrossRefGoogle Scholar
Bohlender, D. A., Landstreet, J. D., and Thompson, I. B. (1993). A study of magnetic fields in AP SI and He weak stars. Astronomy and Astrophysics, 269, 355376.Google Scholar
Bommier, V. A. (2012). Hanle effect from a dipolar magnetic structure: The case of the solar corona and the case of a star. Astronomy and Astrophysics, 539, 122, 7 pp.CrossRefGoogle Scholar
Borra, E. and Landstreet, J. D. (1980). The magnetic fields of the Ap stars. The Astrophysical Journal Supplement Series, 42, 421445.CrossRefGoogle Scholar
Borra, E., Landstreet, J. D., and Thompson, I. (1983). The magnetic fields of the helium-weak B stars. The Astrophysical Journal Supplement Series, 53, 151167.CrossRefGoogle Scholar
Braithwaite, J. and Spruit, H. C. (2004). A fossil origin for the magnetic field in A stars and white dwarfs. Nature, 431, 819821.CrossRefGoogle Scholar
Brown, S., Donati, J.-F., Rees, D. E., and Semel, M. (1991). Zeeman Doppler imaging of solar-type and AP stars. IV − Maximum entropy reconstruction of 2D magnetic topologies. Astronomy and Astrophysics, 250, 463474.Google Scholar
Carroll, T. A., Kopf, M., Ilyin, I., and Strassmeier, K. G. (2007). Zeeman-Doppler imaging of late-type stars: The surface magnetic field of II Peg. Astronomische Nachrichten, 328, 10431046.CrossRefGoogle Scholar
Carter, B., Brown, S., Donati, J.-F., Rees, D. E., and Semel, M. (1996). Zeeman Doppler imaging of stars with the AAT. Publications of the Astronomical Society of Australia, 13, 150155.CrossRefGoogle Scholar
Cowling, T. T. (1945). On the Sun’s general magnetic field. Monthly Notices of the Royal Astronomical Society, 105, 166174.CrossRefGoogle Scholar
Donati, J.-F. (2001). Imaging the magnetic topologies of cool active stars. Lecture Notes in Physics, 573, 207231.CrossRefGoogle Scholar
Donati, J.-F. and Brown, S. F. (1997). Zeeman−Doppler imaging of active stars. V. Sensitivity of maximum entropy magnetic maps to field orientation. Astronomy and Astrophysics, 326, 11351142.Google Scholar
Donati, J.-F. and Landstreet, J. D. (2009). Magnetic fields of nondegenerate stars. Annual Review of Astronomy and Astrophysics, 47, 333370.CrossRefGoogle Scholar
Donati, J.-F., Semel, M., Rees, D. E., Taylor, K., and Robinson, R. D. (1990). Detection of a magnetic region on HR 1099. Astronomy and Astrophysics, 232, L1L4.Google Scholar
Donati, J.-F., Brown, S. F., Semel, M., and Rees, D. E. (1992). Mapping magnetic fields on rapidly rotating stars: Application to the RS CVn System HR 1099. In Cool Stars, Stellar Systems, and the Sun. ASP Conference Series, Vol. 26. San Francisco: Astronomical Society of the Pacific, pp. 353355.Google Scholar
Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., and Collier Cameron, A. (1997). Spectropolarimetric observations of active stars. Monthly Notices of the Royal Astronomical Society, 291, 658682.CrossRefGoogle Scholar
Donati, J.-F., Babel, J., Harries, T. J. et al. (2002). The magnetic field and wind confinement of θ1 Orionis C. Monthly Notices of the Royal Astronomical Society, 333, 5570.CrossRefGoogle Scholar
Donati, J.-F., Gregory, S. G., Alencar, S. H. P. et al. (2012). Magnetometry of the classical T Tauri star GQ Lup: Non-stationary dynamos and spin evolution of young Suns. Monthly Notices of the Royal Astronomical Society, 425, 29482963.CrossRefGoogle Scholar
Eisberg, R. and Resnick, R. (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles. New York: Wiley.Google Scholar
Fares, R., Donati, J.-F., Moutout, C.et al. (2009). Magnetic cycles of the planet-hosting star τ Bootis – II. A second magnetic polarity reversal. Monthly Notices of the Royal Astronomical Society, 398, 13831391.CrossRefGoogle Scholar
Fares, R., Donati, J.-F., Moutout, C.et al. (2012). Magnetic field, differential rotation and activity of the hot-Jupiter-hosting star HD 179949. Monthly Notices of the Royal Astronomical Society, 423, 10061017.CrossRefGoogle Scholar
Gregory, S. G., Donati, J.-F., Morin, J.et al. (2012). Can we predict the global magnetic topology of a pre-main-sequence star from its position in the Hertzsprung-Russell Diagram?The Astrophysical Journal, A97, 755797.Google Scholar
Grunhut, J. H. and Wade, G. A. (2012). The incidence of magnetic fields in massive stars: An overview of the MiMeS survey component. In Hoffman, J. L., Bjorkman, J., and Whitney, B., eds., Stellar Polarimetry: From birth to death. AIP Conference Proceedings, Vol. 1429. Melville NY: AIP Publishing, pp. 6774.Google Scholar
Grunhut, J. H., Wade, G. A., Hanes, D. A., and Alecian, E. (2010). Systematic detection of magnetic fields in massive, late-type supergiants. Monthly Notices of the Royal Astronomical Society, 408, 22902297.CrossRefGoogle Scholar
Hale, G. E. (1908). Solar vortices and the Zeeman effect. Publications of the Astronomical Society of the Pacific, 20, 220224.CrossRefGoogle Scholar
Hanle, W. (1924). Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszen. Zeitschrift fuer Physik, 30, 93105.CrossRefGoogle Scholar
Henrichs, H. F., de Jong, J. A., Donati, J.-F.et al. (2000). Detection of a weak magnetic field in the pulsating Be star β Cephei. In Glagolevskij, Yu. V. and Romanyuk, I. I., eds., Magnetic Fields of Chemically Peculiar and Related Stars. Proceedings of the International Meeting, held at the Special Astrophysical Observatory of Russian AS, September 23–27, 1999, pp. 5760.Google Scholar
Henrichs, H. F., de Jong, J. A., Verdugo, E.et al. (2013). Discovery of the magnetic field in the pulsating B star beta Cephei. Astronomy and Astrophysics, 555, A46.CrossRefGoogle Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A. (1968). Observation of a rapidly pulsating radio source. Nature, 217, 743753.CrossRefGoogle Scholar
Houk, N. and Swift, C. (1999). Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars, Vol. 5. Department of Astronomy, University of Michigan.Google Scholar
Hubrig, S., Briquet, M., Schöller, M.et al. (2006). Discovery of magnetic fields in the β Cephei star ξ1 CMa and in several slowly pulsating B stars. Monthly Notices of the Royal Astronomical Society, 369, L61L65.CrossRefGoogle Scholar
Hubrig, S., Yudin, R. V., Pogodin, M., Schoeller, M., and Peters, G. J. (2007). Evidence for weak magnetic fields in early-type emission stars. Astronomische Nachrichten, 328, 11331136.CrossRefGoogle Scholar
Hubrig, S., Briquet, M., De Cat, P.et al. (2009). New magnetic field measurements of β Cephei stars and slowly pulsating B stars. Astronomische Nachrichten, 330, 317329.CrossRefGoogle Scholar
Hubrig, S., Schoeller, M., Savanov, I. et al. (2010). The exceptional Herbig Ae star HD 101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star. Astronomische Nachrichten, 331, 361367.CrossRefGoogle Scholar
Hubrig, S., Ilyin, I., Schoeller, M.et al. (2011). First magnetic field models for recently discovered magnetic β Cephei and slowly pulsating B stars. The Astrophysical Journal, 726, L5L9.CrossRefGoogle Scholar
Hubrig, S., Gonzalez, J. F., Ilyin, I.et al. (2012). Magnetic fields of HgMn stars. Astronomy and Astrophysics, 547, A90 (24pp).CrossRefGoogle Scholar
Hubrig, S., Schoeller, M., Kholtygin, A. F.et al. (2012). Magnetic field detection in the bright A0-type supergiant HD 92207. Astronomy and Astrophysics, 546, L6 (4pp).CrossRefGoogle Scholar
Hussain, G. A. J. (2012). T Tauri stars magnetic fields and magnetospheres. Astronomische Nachrichten, 333, 419.CrossRefGoogle Scholar
Hussain, G. A. J., Collier Cameron, A., Jardine, M. M.et al. (2009). Surface magnetic fields on two accreting T Tauri stars: CVCha and CVCha. Monthly Notices of the Royal Astronomical Society, 398, 198200.CrossRefGoogle Scholar
Ignace, R. (2010). The Hanle effect as a diagnostic of magnetic fields in stellar envelopes. V. Thin lines from Keplerian disks. The Astrophysical Journal, 725, 10401052.CrossRefGoogle Scholar
Johns-Krull, C. M. (2007). The magnetic fields of classical T Tau stars. The Astrophysical Journal, 664, 975985.CrossRefGoogle Scholar
Johns-Krull, C. M., Valenti, F. A., and Koresko, C. (1999). Measuring the magnetic field on the classical T Tauri star BP Tauri. The Astrophysical Journal, 516, 900915.CrossRefGoogle Scholar
Jordan, S., Werner, K., and O’Toole, S. J. (2005). Discovery of magnetic fields in central stars of planetary nebulae. Astronomy and Astrophysics, 432, 273279.CrossRefGoogle Scholar
Jordan, S., Bagnulo, S., Werner, K., and O’Toole, S. J. O. (2012). Magnetic fields in central stars of planetary nebulae?The Astrophysical Journal, 542, A64, 4 pp.Google Scholar
Kemp, J. C. and Wolstencroft, R. D. (1974). The intrinsic linear polarization of 53 Camelopardalis and α2 Canum Venaticorum. Monthly Notices of the Royal Astronomical Society, 166, 118.CrossRefGoogle Scholar
Kemp, J. C., Swedlund, J. B., Landstreet, J. D., and Angel, J. R. P. (1970). Discovery of circularly polarized light from a white dwarf. The Astrophysical Journal, 161, L77L79.CrossRefGoogle Scholar
Kepler, S. O., Pelisoli, I., Jordan, S.et al. (2013). Magnetic white dwarf stars in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 429, 29342944.CrossRefGoogle Scholar
Kochukhov, O. and Piskunov, N. (2002). Doppler imaging of stellar magnetic fields. II. Numerical experiments. Astronomy and Astrophysics, 388, 868888.CrossRefGoogle Scholar
Kochukhov, O. and Wade, G. A. (2010). Magnetic Doppler imaging of α2 Canum Venaticorum in all four Stokes parameters. Unveiling the hidden complexity of stellar magnetic fields. Astronomy and Astrophysics, 513, A13.CrossRefGoogle Scholar
Kochukhov, O., Bagnulo, S., Wade, G. A.et al. (2004). Magnetic Doppler imaging of 53 Camelopardalis in all four Stokes parameters. Astronomy and Astrophysics, 414, 613632.CrossRefGoogle Scholar
Kochukhov, O., Makaganiuk, V., and Piskunov, N. (2010). Least-squares deconvolution of the stellar intensity and polarization spectra. Astronomy and Astrophysics, 524, A5.CrossRefGoogle Scholar
Kochukhov, O., Wade, G. A., and Shulyak, D. (2012). Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: A luxury or a necessity?Monthly Notices of the Royal Astronomical Society, 421, 30043018.CrossRefGoogle Scholar
Kochukhov, O., Makaganiuk, V., Piskunov, N.et al. (2013). Are there tangled magnetic fields on HgMn stars?Astronomy and Astrophysics, 554, A61 (12pp).CrossRefGoogle Scholar
Kolenberg, K. and Bagnulo, S. (2009). Observational constraints on the magnetic field of RR Lyrae stars. Astronomy and Astrophysics, 498, 543550.CrossRefGoogle Scholar
Konstantinova-Antova, R., Aurière, M., Charbonnel, C.et al. (2010). Direct detection of a magnetic field in the photosphere of the single M giant EK Bootis. How common is magnetic activity among M giants?Astronomy and Astrophysics, 524, id. A57 (9pp).CrossRefGoogle Scholar
Konstantinova-Antova, R., Aurière, M., Petit, P.et al. (2012). Magnetic field structure in single late-type giants: The effectively single giant V390 Aurigae. Astronomy and Astrophysics, 541, A44 (7pp).CrossRefGoogle Scholar
Kudryavtsev, D. O., Romanyuk, I. I., Elkin, V. G., and Paunzen, E. (2006). New magnetic chemically peculiar stars. Monthly Notices of the Royal Astronomical Society, 421, 18041828.CrossRefGoogle Scholar
Landi Degl'Innocenti, E. (1992). Magnetic field measurements. In Sanchez, F., Collados, M., and Vazquez, M., eds., Solar Observations: Techniques and Interpretation: First Canary Islands Winter School of Astrophysics (A93-53183 23-92). Cambridge University Press, pp. 71, 73–143.Google Scholar
Landi Degl’Innocenti, E. and Landolfi, M. (2004). Polarization in Spectral Lines. Dordrecht: J. Kluwer Academic Publishers.CrossRefGoogle Scholar
Landi Degl’Innocenti, M., Calamai, G., Landi Degl’Innocenti, E., and Patriarchi, P. (1981). Broad-band linear polarization and magnetic intensification in rotating magnetic stars. The Astrophysical Journal, 249, 228237.CrossRefGoogle Scholar
Landolfi, M. and Landi Degl’Innocenti, E. (1982). Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles. Solar Physics, 78, 355364.CrossRefGoogle Scholar
Landolfi, M., Bagnulo, S., Landi Degl’Innocenti, M., and Landi Degl’Innocenti, E. (2001). The Paschen-Back effect on fine and hyperfine structure: Impact on polarized spectra of Ap and Bp stars. In Mathys, G., Solanki, S. K., and Wickramasinghe, D. T., eds., Magnetic Fields across the Hertzsprung-Russell Diagram, ASP Conference Series, Vol. 248. San Francisco: Astronomical Society of the Pacific, pp. 239352.Google Scholar
Landstreet, J. D. (1982). A search for magnetic fields in normal upper-main-sequence stars. The Astrophysical Journal, 258, 639650.CrossRefGoogle Scholar
Landstreet, J. D. (1988). The magnetic field and abundance distribution geometry of the peculiar A star 53 Camelopardalis. The Astrophysical Journal, 326, 967987.CrossRefGoogle Scholar
Landstreet, J. D. (1992). Magnetic fields at the surfaces of stars. Astronomy and Astrophysics Review, 4, 3577.CrossRefGoogle Scholar
Landstreet, J. D. (2007a). Observing and modeling stellar magnetic fields: Basic physics and simple models. In Neiner, C. and Zahn, J.-P., eds., Stellar Magnetism. EAS (European Astronomical Society) Publications Series, pp. 120.Google Scholar
Landstreet, J. D. (2007b). Observing and modeling stellar magnetic fields: Models. In Neiner, C. and Zahn, J.-P., eds., Stellar Magnetism. EAS (European Astronomical Society) Publications Series, pp. 2154.Google Scholar
Landstreet, J. D. and Borra, E. (1978). The magnetic field of Sigma Orionis. The Astrophysical Journal, 224, L5L8.CrossRefGoogle Scholar
Landstreet, J. D. and Mathys, G. (2000). Magnetic models of slowly rotating magnetic Ap stars: Aligned magnetic and rotation axes. Astronomy and Astrophysics, 359, 213226.Google Scholar
Landstreet, J. D., Barker, P. K., Bohlender, D. A., and Jewison, M. S. (1989). The magnetic field and abundance distribution geometry of the peculiar B star HD 215441. The Astrophysical Journal, 344, 876888.CrossRefGoogle Scholar
Landstreet, J. D., Silaj, J., Andretta, S.et al. (2008). Searching for links between magnetic fields and stellar evolution. III. Measurement of magnetic fields in open cluster Ap stars with ESPaDOnS. Astronomy and Astrophysics, 481, 465480.CrossRefGoogle Scholar
Landstreet, J. D., Bagnulo, S., Fossati, L., Jordan, S., and O’Toole, S. J. O. (2012). The magnetic fields of hot subdwarf stars. Astronomy and Astrophysics, 541, A100, 5 pp.CrossRefGoogle Scholar
Leone, F., Martínez González, M. J., Corradi, R., Privitera, G., and Manso Sainz, R. (2011). Non-detection of magnetic fields in the central stars of the planetary nebulae NGC 1360 and LSS 1362. The Astrophysical Journal, 731, L33, 4 pp.CrossRefGoogle Scholar
Leone, F., Corradi, R. L. M., González, M. M., Ramos, A. A., and Sainz, R. M. (2014). A search for magnetic fields on central stars in planetary nebulae. Astronomy and Astrophysics, 563, id.A43, 5 pp.CrossRefGoogle Scholar
Leroy, J.-L. (1962). Contributions a l’etude de la polarization de la lumiere solaire. Annales d’Astrophysique, 25, 127164.Google Scholar
Leroy, J.-L. (1995). Linear polarimetry of AP stars. V. A general catalogue of measurements. Astronomy and Astrophysics Supplement Series, 114, 79104.Google Scholar
Leroy, J.-L., Landolfi, M., and Landi Degl’Innocenti, M. (1996). Linear polarimetry of AP stars. VI. A modified dipolar model consistent with the observations. Astronomy and Astrophysics, 311, 513522.Google Scholar
Lueftinger, T., Kochukhov, O., Ryabchikova, T.et al. (2010). Magnetic Doppler Imaging of the roAp star HD 24712. Astronomy and Astrophysics, 509, A71 (12pp).CrossRefGoogle Scholar
Makaganiuk, V., Kochukhov, O., Piskunov, N.et al. (2011). The search for magnetic fields in mercury–manganese stars. Astronomy and Astrophysics, 525, A97 (12pp).CrossRefGoogle Scholar
Manso Sainz, R. and Martinez Gonzalez, M. J. (2012). Hanle effect for stellar dipole and quadrupole. The Astrophysical Journal, 760, id. 7, 10 pp.CrossRefGoogle Scholar
Marsden, S., Petit, P., Jeffers, S.et al. (2014). A Bcool magnetic snapshot survey of cool stars. Monthly Notes of the Royal Astronomical Society, 444(4), 35173536.CrossRefGoogle Scholar
Mathys, G. (1989). The observation of magnetic fields in nondegenerate stars. Fundamentals of Cosmic Physics, 13, 143308.Google Scholar
Mathys, G. (1990). Ap stars with resolved Zeeman split lines. Astronomy and Astrophysics, 236, 151172.Google Scholar
Mathys, G. (1991). Spectropolarimetry of magnetic stars. II – The mean longitudinal magnetic field. Astronomy and Astrophysics Supplement Series, 89, 121157.Google Scholar
Mathys, G. (1994). Spectropolarimetry of magnetic stars. III – Measurement uncertainties. Astronomy and Astrophysics Supplement Series, 108, 547560.Google Scholar
Mathys, G. (1995a). Spectropolarimetry of magnetic stars. IV – The crossover effect. Astronomy and Astrophysics, 293, 733745.Google Scholar
Mathys, G. (1995b). Spectropolarimetry of magnetic stars. V – The mean quadratic magnetic field. Astronomy and Astrophysics, 293, 746763.Google Scholar
Mathys, G. (2004). Magnetic fields of A-type stars. In Zverko, J., Ziznovsky, J., Adelman, S. J., and Weiss, W. W., eds., The A-Star Puzzle. IAU Symposium, No. 224. Cambridge University Press, pp. 224234.Google Scholar
Mathys, G. and Lanz, T. (1992). AP stars with resolved magnetically split lines. Astronomy and Astrophysics, 256, 169184.Google Scholar
Mathys, G., Hubrig, S., Landstreet, J. D., Lanz, T., and Manfroid, J. (1997). The mean magnetic field modulus of AP stars. Astronomy and Astrophysics Supplement Series, 123, 353402.CrossRefGoogle Scholar
Mathys, G., Hubrig, S., Mason, E.et al. (2012). A search for magnetic fields in cool sdB stars. Astronomische Nachrichten, 333, 3033.CrossRefGoogle Scholar
Mestel, L. (2012). Stellar Magnetism, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Mestel, L. and Landstreet, J. D. (2005). Stellar magnetic fields. Lecture Notes in Physics, 664, 183218.CrossRefGoogle Scholar
Michaud, G., Charland, Y., Vauclair, S., and Vauclair, G. (1976). Diffusion in main-sequence stars – Radiation forces, time scales, anomalies. The Astrophysical Journal, 210, 447465.CrossRefGoogle Scholar
Morin, J., Donati, J.-F., Petit, P.et al. (2008). Large-scale magnetic topologies of mid M dwarfs. Monthly Notices of the Royal Astronomical Society, 390, 567581.CrossRefGoogle Scholar
Morin, J., Donati, J.-F., Petit, P.et al. (2010). Large-scale magnetic topologies of late M dwarfs. Monthly Notices of the Royal Astronomical Society, 407, 22692286.CrossRefGoogle Scholar
Morin, J., Donati, J.-F., Petit, P.et al. (2011). Exploring the magnetic topologies of cool stars. In Choudhary, D. and Strassmeier, K., eds., The Physics of Sun and Star Spots. IAU Symposium, No. 273. Cambridge University Press, pp. 181187.Google Scholar
Muzerolle, J., Calvet, N., and Hartmann, L. (1998). Magnetospheric accretion models for the hydrogen emission lines of T Tauri Stars. The Astrophysical Journal, 492, 709713.CrossRefGoogle Scholar
Neiner, C., Geers, V. C., Henrichs, H. F.et al. (2003). Discovery of a magnetic field in the slowly pulsating B star Zeta Cassiopeiae. Astronomy and Astrophysics, 406, 10191031.CrossRefGoogle Scholar
Paletou, F. (2012). A critical evaluation of the principal component analysis detection of polarized signatures using real stellar data. Astronomy and Astrophysics, 544, A4 (5pp).CrossRefGoogle Scholar
Petit, P., Donati, J.-F., and Aurière, M. (2005). Large-scale magnetic field of the G8 dwarf ξ Bootis A. Monthly Notices of the Royal Astronomical Society, 361, 837849.CrossRefGoogle Scholar
Petit, P., Lignières, F., Wade, G. A.et al. (2010). The rapid rotation and complex magnetic field geometry of Vega. Astronomy and Astrophysics, 523, A41.CrossRefGoogle Scholar
Petit, P., Van Grootel, V., Bagnulo, S. et al. (2012). High-resolution spectropolarimetric observations of hot subdwarfs. In Proceedings of the Fifth Meeting on Hot Subdwarf Stars and Related Objects. ASP Conference Series, Vol. 452. San Francisco: Astronomical Society of the Pacific, pp. 8790.Google Scholar
Petit, V., Owocky, S. P., Wade, G. A.et al. (2013). A magnetic confinement versus rotation classification of massive-star magnetospheres. Monthly Notices of the Royal Astronomical Society, 429, 398422.CrossRefGoogle Scholar
Piskunov, N. and Kochukhov, O. (2002). Doppler imaging of stellar magnetic fields. I. Techniques. Astronomy and Astrophysics, 381, 736756.CrossRefGoogle Scholar
Piskunov, N., Snik, F., Dolgopolov, A.et al. (2011). HARPSpol – The new polarimetric mode for HARPS. The Messenger, 143, 710.Google Scholar
Preston, G. W. (1971). The mean surface fields of magnetic stars. The Astrophysical Journal, 164, 309315.CrossRefGoogle Scholar
Putney, A. (1997). Surveying DC white dwarfs for magnetic fields. The Astrophysical Journal Supplement Series, 112, 527556.CrossRefGoogle Scholar
Rachkovsky, D. N. (1962). Magnetic rotation effects in spectral lines. Crimean Astrophysical Observatory, 28, 259270.Google Scholar
Reiners, A. (2012). Observations of cool-star magnetic fields. Living Reviews in Solar Physics, 9(1), 773.CrossRefGoogle Scholar
Reiners, A. and Basri, G. (2010). A volume-limited sample of 63 M7-M9.5 dwarfs. II. Activity, magnetism, and the fade of the rotation-dominated dynamo. The Astrophysical Journal, 710, 924935.CrossRefGoogle Scholar
Renson, P. and Manfroid, J. (2009). Catalogue of Ap, HgMn, and Am stars. Astronomy and Astrophysics, 498, 961966.CrossRefGoogle Scholar
Robinson Jr., R. D. (1980). Magnetic field measurements on stellar sources − A new method. The Astrophysical Journal, 239, 961967.CrossRefGoogle Scholar
Robinson Jr., R. D., Wordern, S. P., and Harvey, J. W. (1980). Observations of magnetic fields on two late-type dwarf stars. The Astrophysical Journal, 236, L155L158.CrossRefGoogle Scholar
Saar, S. H. and Linsky, J. L. (1985). The photospheric magnetic field of the dM3.5e flare star AD Leonis. The Astrophysical Journal, 299, L47L50.CrossRefGoogle Scholar
Schmidt, G. D. (2004). Polarized emission and the discovery of new magnetic CVs. In Vrielmann, S. and Cropper, M., eds., Magnetic Cataclysmic Variable. IAU Colloquium, 190, ASP Conference Proceedings, Vol. 315. San Francisco: Astronomical Society of the Pacific, pp. 2232.Google Scholar
Schmidt, G. D. (2005). The highs and lows of it: Magnetic accretion at all rates. In Hameury, J. M. and Lasota, J.-P., eds., The Astrophysics of Cataclysmic Variables and Related Objects. ASP Conference, Vol. 330. San Francisco: Astronomical Society of the Pacific, pp. 125136.Google Scholar
Schmidt, G. and Norsworthy, J. E. (1991). Rotation and magnetism in white dwarfs. The Astrophysical Journal, 366, 270276.CrossRefGoogle Scholar
Semel, M. (1967). Contribution à l’étude des champs magnétiques dans les régions actives solaires. Annales d’Astrophysique, 30, 513551.Google Scholar
Semel, M. (1989). Zeeman-Doppler imaging of active stars: Basic principles. Astronomy and Astrophysics, 225, 456466.Google Scholar
Semel, M. and Li, J. (1996). Zeeman-Doppler imaging of solar-type stars: Multi line technique. Solar Physics, 164, 417428.CrossRefGoogle Scholar
Shibahashi, H. (2000). The oblique pulsator model for the Blazhko effect in RR Lyrae stars. Theory of amplitude modulation I. In Szabados, L. and Kurtz, D., eds., The Impact of Large-Scale Surveys on Pulsating Star Research. ASP Conference Series, Vol. 203. San Francisco: Astronomical Society of the Pacific, pp. 299306.Google Scholar
Shorlin, S. L. S., Wade, G. A., Donati, J.-F.et al. (2002). A highly sensitive search for magnetic fields in B, A and F stars. Astronomy and Astrophysics, 392, 637652.CrossRefGoogle Scholar
Shultz, M., Wade, G. A., Grunhut, J.et al. (2013). Critical evaluation of magnetic field detections reported for pulsating B-type stars in light of ESPaDOnS, Narval, and reanalyzed FORS1/2 observations. The Astrophysical Journal, 750, id. 2 (10pp).Google Scholar
Silvester, J., Neiner, C., Henrichs, H. F.et al. (2009). On the incidence of magnetic fields in slowly pulsating B, β Cephei and B-type emission-line stars. Monthly Notices of the Royal Astronomical Society, 398, 15051511.CrossRefGoogle Scholar
Stępień, K. (2000). Loss of angular momentum of magnetic Ap stars in the pre-main sequence phase. Astronomy and Astrophysics, 353, 227238.Google Scholar
Stibbs, D. W. N. (1950). A study of the spectrum and magnetic variable star HD 125248. Monthly Notices of the Royal Astronomical Society, 110, 395404.CrossRefGoogle Scholar
Stift, M. J., Leone, F., and Landi Degl’Innocenti, E. (2008). Modelling the incomplete Paschen-Back effect in the spectra of magnetic Ap stars. Monthly Notices of the Royal Astronomical Society, 385, 18131819.CrossRefGoogle Scholar
Stift, M. J., Leone, F., and Cowley, C. R. (2012). The recondite intricacies of Zeeman Doppler mapping. Monthly Notices of the Royal Astronomical Society, 419, 29122920.CrossRefGoogle Scholar
Townsend, R. H. D., Owocki, S. P., and Groote, D. (2005). The rigidly rotating magnetosphere of σ Orionis E. The Astrophysical Journal, 630, L81L84.CrossRefGoogle Scholar
Unno, W. (1956). Line formation of a normal Zeeman triplet. Publications of the Astronomical Society of Japan, 8, 108125.Google Scholar
Valyavin, G. and Fabrika, S. (1999). White dwarfs magnetic fields evolution. In Solheim, S. E. and Meistas, E. G., eds., 11th European Workshop on White Dwarfs. ASP Conference Series, Vol. 169. San Francisco: Astronomical Society of the Pacific, pp. 206213.Google Scholar
Valyavin, G., Wade, G. A., Bagnulo, S.et al. (2008). The peculiar magnetic field morphology of the white dwarf WD 1953-011: Evidence for a large-scale magnetic flux tube?The Astrophysical Journal, 683, 466478.CrossRefGoogle Scholar
Vauclair, S. (1983). Atomic diffusion and abundance grandients in stellar atmospheres. In Hauck, B. and Maeder, A., eds., Astrophysical Processes in Upper Main Sequence Stars. Geneva: Geneva Observatory, Switzerland, p. 167.Google Scholar
Wade, G. A., Donati, J.-F., Landstreet, J. D., and Shorlin, S. L. S. (2000a). Spectropolarimetric measurements of magnetic Ap and Bp stars in all four Stokes parameters. Monthly Notices of the Royal Astronomical Society, 314, 823850.CrossRefGoogle Scholar
Wade, G. A., Donati, J.-F., Landstreet, J. D., and Shorlin, S. L. S. (2000b). High-precision magnetic field measurements of Ap and Bp stars. Monthly Notices of the Royal Astronomical Society, 314, 851867.CrossRefGoogle Scholar
Wade, G. A., Bagnulo, S., Kochukhov, O.et al. (2001). LTE spectrum synthesis in magnetic stellar atmospheres. The interagreement of three independent polarised radiative transfer codes. Astronomy and Astrophysics, 374, 265279.CrossRefGoogle Scholar
Wade, G. A., Drouin, D., Bagnulo, S.et al. (2005). Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars?Astronomy and Astrophysics, 442, L31L34.CrossRefGoogle Scholar
Wade, G. A., Bagnulo, S., Drouin, D.et al. (2007). A search for strong, ordered magnetic fields in Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 376, 11451161.CrossRefGoogle Scholar
Wunner, G., Roesner, W., Herold, H., and Ruder, H. (1985). Stationary hydrogen lines in white dwarf magnetic field and the spectrum of the magnetic degenerate Grw+70°8247. Astronomy and Astrophysics, 149, 102108.Google Scholar
Zeeman, P. (1897). On the influence of magnetism on the nature of the light emitted by a substance. Nature, 55, 347351.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×