Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T00:17:14.056Z Has data issue: false hasContentIssue false

8 - Plastids and cellular function

Published online by Cambridge University Press:  15 January 2010

Kevin Pyke
Affiliation:
University of Nottingham
Get access

Summary

From what has been discussed in the preceding chapters, it should be clear that the plastid is a highly dynamic organelle in terms of its biochemistry, its molecular biological systems, its photochemistry and its molecular interaction with the nucleus. In addition to these aspects of plastid biology, one also needs to consider how the plastid resides within the cytoplasm of the cell, in many cases as a large closely packed population of individual organelles resulting from extensive divisions, and how the individual organelles move about in the cell and physically interact with other cellular organelles. Classic images of plastids from sectioned leaves and electron micrographs (see Figs. 2.4, 2.5) give the impression of a static organelle in which little changes physically with time. Modern imaging techniques, together with developments in the use of visible molecular markers that can be artificially incorporated into plastids, reveal a very different view of plastids: that of a highly dynamic organelle capable of rapid changes in morphology and movement within the cell. In this chapter, some of these dynamic aspects of plastid biology are described. In addition, we consider how different types of plastids differentiate in different types of cells and how they might influence plant development itself.

Plastid division

All plastids in a plant originate from proplastids in the cells of the meristem, which in turn are generally derived from the few proplastids in the egg cell in the flower. The fact that plastids need to divide to establish large populations of plastids in the large number of cells that make up a plant is obvious.

Type
Chapter
Information
Plastid Biology , pp. 153 - 177
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×