Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2003
  • Online publication date: August 2009

11 - Rehabilitation

    • By David Gow, Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK, Chris Fraser, Department of Medicine, Royal Bolton Hospital Farnworth, Bolton BL 4 OJR, UK, Shaheen Hamdy, Department of GI Sciences and Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK
  • Edited by Simon Boniface, Ulf Ziemann, Johann Wolfgang Goethe-Universität Frankfurt
  • Publisher: Cambridge University Press
  • DOI: https://doi.org/10.1017/CBO9780511544903.012
  • pp 264-287

Summary

Introduction

Neurological rehabilitation can be defined as the institution of therapy to maximize the degree of recovery within a given individual following a neurological insult. It has been suggested that neurological rehabilitation is based around the phenomenon of neuronal plasticity which is thought to play a crucial role in recovery from neurological injury and in particular stroke. For the design and implementation of effective rehabilitative strategies it is essential to consider three components: (i) an understanding of the nature of the initial insult, (ii) an understanding of the manner in which recovery may occur and (iii) an objective measure of the result of therapeutic interventions employed.

Each of these components can be addressed in part with transcranial magnetic stimulation and the area of recovery from disability following stroke has received most attention. In particular, TMS has been used to investigate motor reorganization following stroke, which has led to a greater understanding of the potential recovery patterns that occur. TMS may also have a role in the induction of plasticity itself and has potential to become a rehabilitative tool in recovery from neurological injury.

In this chapter we will review how TMS has been utilized in the study of spontaneous recovery, explore the role of TMS in quantifying rehabilitation and examine how TMS has been applied to studies aimed at influencing the recovery process with therapeutic intervention.

Mechanisms of recovery from unilateral hemispheric stroke

Unilateral hemispheric stroke (UHS) has many advantages as a model for investigating recovery from neurological injury.

Related content

Powered by UNSILO
REFERENCES
Barer, D. H. (1989). The natural history and functional consequences of dysphagia after hemispheric stroke. J. Neurol. Neurosurg. Psychiatry, 52: 236–241
Ben-Shachar, D., Belmaker, R. H., Grisaru, N. & Klein, E. (1997). Transcranial magnetic stimulation induces alterations in brain monoamines. J. Neural. Transm., 104: 191–197
Ben-Shachar, D., Gazawi, H., Riboyad-Levin, J. & Klein, E. (1999). Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT 2 receptor characteristics in rat brain. Brain Res., 816: 78–83
Berardelli, A., Inghilleri, M., Rothwell, J. C.. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp. Brain Res., 122: 79–84
Berardelli, A., Inghilleri, M., Gilio, F.. (1999). Effects of repetitive cortical stimulation on the silent period evoked by magnetic stimulation. Exp. Brain Res., 125: 82–86
Bobath, B. (1970). Adult Hemiplegia: Evaluation and Treatment. London: William Heinemann Medical Books Ltd.
Brasil-Neto, J. P., Valls-Sole, J., Pascual-Leone, A.. (1993). Rapid modulation of human cortical motor outputs following ischaemic nerve block. Brain, 116: 511–525
Buckner, R. L., Corbetta, M., Schatz, J., Raichle, M. E. & Petersen, S. E. (1996). Preserved speech abilities and compensation following prefrontal damage. Proc. Natl Acad. Sci., USA, 93: 1249–1253
Cao, Y., D'Olhaberriague, L., Vikingstad, E. M., Levine, S. R. & Welch, K. M. (1998). Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke, 29: 112–122
Caramia, M. D., Palmieri, M. G., Giacomini, P., Iani, C., Dally, L. & Silvestrini, M. (2000). Ipsilateral activation of the unaffected motor cortex in patients with hemiparetic stroke. Clin. Neurophysiol., 111: 1990–1996
Carr, L. J., Harrison, L. M., Evans, A. L. & Stephens, J. A. (1993). Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain, 116: 1223–1247
Carr, L. J., Harrison, L. M. & Stephens, J. A. (1994). Evidence for bilateral innervation of certain homologous motoneurone pools in man. J. Physiol., 475: 217–227
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403
Chollet, F., DiPiero, V., Wise, R. J., Brooks, D. J., Dolan, R. J. & Frackowiak, R. S. (1991). The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann. Neurol., 29: 63–71
Cohen, L. G., Brasil-Neto, J. P., Pascual-Leone, A. & Hallett, M. (1993). Plasticity of cortical motor output organization following deafferentation, cerebral lesions, and skill acquisition. Adv. Neurol., 63: 187–200
Cote, R., Hachinski, V. C., Shurvell, B. L., Norris, J. W. & Wolfson, C. (1986). The Canadian Neurological Scale: a preliminary study in acute stroke. Stroke, 17: 731–737
Cramer, S. C., Nelles, G., Benson, R. R.. (1997). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 28: 2518–2527
D'Olhaberriague, L., Gamissans, Espadaler J. M., Marrugat, J.Valls, A., Ley, Oliveras C. & Seoane, J. L. (1997). Transcranial magnetic stimulation as a prognostic tool in stroke. J. Neurol. Sci., 147: 73–80
Donoghue, J. P., Suner, S. & Sanes, J. N. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp. Brain Res., 79: 492–503
Fisher, C. M. (1992). Concerning the mechanism of recovery in stroke hemiplegia. Can. J. Neurol. Sci., 19: 57–63
Fraser, C., Hamdy, S., Rothwell, J. C. & Thompson, D. G. (1999). Sensory-induced reorganisation of human swallowing motor cortex displays differential frequency dependent patterms. NeuroImage, 9: A507
Fraser, C., Hobday, D., Power, M.. (2001a). A functional study of sensory dependent brain reorganisation during swallowing. Gastroenterology, 120: A713
Fraser, C., Power, M., Hamdy, S.. (2001b). Driving plasticity in adult human motor cortex improves functional performance after cerebral injury. Clin. Neurophysiol., 112: S86
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1996). The cortical topography of human swallowing musculature in health and disease. Nat. Med., 2: 1217–1224
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1997). Explaining oropharyngeal dysphagia after unilateral hemispheric stroke. Lancet, 350: 686–692
Hamdy, S., Aziz, Q., Rothwell, J. C.. (1998a). Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology, 115: 1104–1112
Hamdy, S., Rothwell, J. C., Aziz, Q., Singh, K. D. & Thompson, D. G. (1998b). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat. Neurosci., 1: 64–68
Hausmann, A., Weis, C., Marksteiner, J., Hinterhuber, H. & Humpel, C. (2000). Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res. Mol. Brain Res., 76: 355–362
Heald, A., Bates, D., Cartlidge, N. E., French, J. M. & Miller, S. (1993). Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain, 116: 1371–1385
Heiss, W. D., Kessler, J., Thiel, A., Ghaemi, M. & Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann. Neurol., 45: 430–438
Keck, M. E., Sillaber, I., Ebner, K.. (2000). Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur. J. Neurosci., 12: 3713–3720
Liepert, J., Bauder, H., Wolfgang, H. R., Miltner, W. H., Taub, E. & Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31: 1210–1216
Mahoney, F. & Barthel, D. (1965). Functional evaluation: the Barthel index. MD State Med. J., 14: 61–85
Muellbacher, W., Artner, C. & Mamoli, B. (1998). Motor evoked potentials in unilateral lingual paralysis after monohemispheric ischaemia. J. Neurol. Neurosurg. Psychiatry, 65: 755–761
Muellbacher, W., Artner, C. & Mamoli, B. (1999). The role of the intact hemisphere in recovery of midline muscles after recent monohemispheric stroke. J. Neurol., 246: 250–256
Muller, K., Iliyya, Kass F. & Reitz, M. (1997). Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann. Neurol., 42: 705–711
Muller, M. B., Toschi, N., Kresse, A. E., Post, A. & Keck, M. E. (2000). Long-term repetitive transcranial magnetic stimulation increases expression of brain derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology, 23: 205–215
Nelles, G., Spiekermann, G., Jueptner, M.. (1999). Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke, 30: 1510–1516
Netz, J., Lammers, T. & Homberg, V. (1997). Reorganization of motor output in the non-affected hemisphere after stroke. Brain, 120: 1579–1586
Nudo, R. J. (1997). Remodeling of cortical motor representations after stroke: implications for recovery from brain damage. Mol. Psychiatry, 2: 188–191
Nudo, R. J. & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol., 75: 2144–2149
Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272: 1791–1794
Nudo, R. J., Plautz, E. J. & Frost, S. B. (2001). Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve, 24: 1000–1019
Leone, Pascual A., Houser, C. M., Reese, K.. (1993). Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr. Clin. Neurophysiol., 89: 120–130
Leone, Pascual A., Sole, Valls J., Wassermann, E. M. & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847–858
Penfield, W. B. E. (1937). Somatic motor and sensory representation in the cerebral cortex in man as studied by electrical stimulation. Brain, 60: 389–443
Rapisarda, G., Bastings, E., Noordhout, A. M., Pennisi, G. & Delwaide, P. J. (1996). Can motor recovery in stroke patients be predicted by early transcranial magnetic stimulation?Stroke, 27: 2191–2196
Ridding, M. C. & Rothwell, J. C. (1997). Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr. Clin. Neurophysiol., 105: 340–344
Ridding, M. C., McKay, D. R., Thompson, P. D. & Miles, T. S. (2001). Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin. Neurophysiol., 112: 1461–1469
Rosen, H. J., Petersen, S. E., Linenweber, M. R.. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55: 1883–1894
Sanes, J. N., Wang, J. & Donoghue, J. P. (1992). Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cereb. Cortex, 2: 141–152
Seitz, R. J., Hoflich, P., Binkofski, F., Tellmann, L., Herzog, H. & Freund, H. J. (1998). Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch. Neurol., 55: 1081–1088
Taub, E., Uswatte, G. & Pidikiti, R. (1999). Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. J. Rehabil. Res. Dev., 36: 237–251
Traversa, R., Cicinelli, P., Bassi, A., Rossini, P. M. & Bernardi, G. (1997). Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke, 28: 110–117
Trompetto, C., Assini, A., Buccolieri, A., Marchese, R. & Abbruzzese, G. (2000). Motor recovery following stroke: a transcranial magnetic stimulation study. Clin. Neurophysiol., 111: 1860–1867
Turton, A., Wroe, S., Trepte, N., Fraser, C. & Lemon, R. N. (1996). Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr. Clin. Neurophysiol., 101: 316–328
Urban, P. P., Hopf, H. C., Fleischer, S., Zorowka, P. G. & Forell, Muller W. (1997). Impaired cortico-bulbar tract function in dysarthria due to hemispheric stroke. Functional testing using transcranial magnetic stimulation. Brain, 120: 1077–1084
Wassermann, E. M. & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin. Neurophysiol., 112: 1367–1377
Wassermann, E. M., Fuhr, P., Cohen, L. G. & Hallett, M. (1991). Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology, 41: 1795–1799
Wassermann, E. M., Leone, Pascual A. & Hallett, M. (1994). Cortical motor representation of the ipsilateral hand and arm. Exp. Brain Res., 100: 121–132
Wassermann, E. M., Grafman, J., Berry, C.. (1996). Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr. Clin. Neurophysiol., 101: 412–417
Weiller, C., Chollet, F., Friston, K. J., Wise, R. J. & Frackowiak, R. S. (1992). Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann. Neurol., 31: 463–472
Weiller, C., Ramsay, S. C., Wise, R. J., Friston, K. J. & Frackowiak, R. S. (1993). Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann. Neurol., 33: 181–189
Weiller, C., Isensee, C., Rijntjes, M.. (1995). Recovery from Wernicke's aphasia: a positron emission tomographic study. Ann. Neurol., 37: 723–732
Woolsey, C. N., Erickson, T. C. & Gilson, W. E. (1979). Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J. Neurosurg., 51: 476–506
Wu, T., Sommer, M., Tergau, F. & Paulus, W. (2000). Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci. Lett., 287: 37–40
Ziemann, U., Corwell, B. & Cohen, L. G. (1998a). Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J. Neurosci., 18: 1115–1123
Ziemann, U., Hallett, M. & Cohen, L. G. (1998b). Mechanisms of deafferentation-induced plasticity in human motor cortex. J. Neurosci., 18: 7000–7007
Ziemann, U., Ishii, K., Borgheresi, A.. (1999). Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J. Physiol., 518: 895–906