Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2003
  • Online publication date: August 2009

1 - The nature and mechanisms of plasticity

Summary

Cortical map plasticity

It is now well established that the functional organization of the cerebral cortex is plastic, that is, changes in organization occur throughout life in response to normal as well as abnormal experience. The potential for reorganization has been demonstrated in both sensory and motor areas of adult cortex, either as a consequence of trauma, pathological changes, manipulation of sensory experience, or learning. These changes can only be evaluated with reference to an extensive experimental base that has identified a repeatable representation pattern (e.g. somatotopy, tonotopy, or retinotopy), for which change can be detected. While the scope of changes are often at the edge of our technical capabilities to assess, there are striking examples of significant and rapid change (for reviews, see Sanes & Donoghue, 2000; Buonomano & Merzenich, 1998). There is an overwhelming belief that modifications in cortical organization emerge through changes in synaptic efficacy within the cortex and elsewhere in the nervous system. Further, these changes are have been closely linked to the phenomena called long-term potentiation (LTP) and long-term depression (LTD). This review deals mainly with the changes that have been detected in the motor cortex and their link to synaptic modification. Some of the most convincing evidence that learning and practice influences cortical organization and that learning operates through LTP/D-mediated mechanisms has come through work in the motor cortex. This work is also of profound significance to the medical community because it implies that the impaired or damaged motor cortex can be restructured through appropriate physical rehabilitation schemes or through pharmacological means that alter mechanisms accounting for LTP/D.

Related content

Powered by UNSILO
REFERENCES
Altman, J. & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol., 124: 319–335
Alvarez-Buylla, A. & Lois, C. (1995). Neuronal stem cells in the brain of adult vertebrates. Stem Cells, 13: 263–272
Aou, S., Oomura, Y., Woody, C. D. & Nishino, H. (1988). Effects of behaviorally rewarding hypothalamic electrical stimulation on intracellularly recorded neuronal activity in the motor cortex of awake monkeys. Brain Res., 439: 31–38
Aou, S., Woody, C. D. & Birt, D. (1992). Changes in the activity of units of the cat motor cortex with rapid conditioning and extinction of a compound eye blink movement. J. Neurosci., 12: 549–559
Aroniadou, V. A. & Keller, A. (1995). Mechanisms of LTP induction in rat motor cortex in vitro. Cereb. Cortex, 5: 353–362
Artola, A. & Singer, W. (1987). Long-term potentiation and NMDA receptors in rat visual cortex. Nature, 330: 649–652
Artola, A., Broecher, S. & Singer, W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature, 347: 69–72
Atwood, H. L. & Wojitowicz, J. M. (1999). Silent synapses in neural plasticity: current evidence. Learn. Mem., 6: 542–571
Bailey, C. H. & Kandel, E. R. (1993). Structural changes accompanying memory storage. Ann. Rev. Physiol., 55: 397–426
Bannerman, D. M., Good, M. A., Butcher, S. P., Ramsay, M. & Morris, R. G. M. (1995). Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature, 378: 182–186
Baranyi, A. & Feher, O. (1978). Conditioned changes of synaptic transmission in the motor cortex of the cat. Exp. Brain Res., 33: 283–289
Baranyi, A. & Feher, O. (1981). Long-term facilitation of excitatory synaptic transmission in single motor cortical neurons of the cat produced by repetitive pairing of synaptic potentials and action potentials following intracellular stimulation. Neurosci. Lett., 23: 303–308
Baranyi, A., Szente, M. B. & Woody, C. D. (1991). Properties of associative long lasting potentiation induced by cellular conditioning in the motor cortex of conscious cats. Neuroscience, 42: 321–334
Barnes, C. A., Jung, M. W., McNaughton, B. L., Korol, D. L., Andreasson, K. & Worley, P. F. (1994). LTP saturation and spatial learning disruption: effects of task variables and saturation levels. J. Neurosci., 14: 5793–5806
Bliss, T. V. P. (1998). The saturation debate. Science, 281: 1975–1976
Bliss, T. V. P. & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J. Physiol., 232: 331–356
Black, J. E., Isaaks, K. R., Anderson, B. J., Alcantara, A. A. & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in the cerebral cortex of adult rats. PNAS, 87: 5568–5572
Bourgeois, J-P., Goldman-Rakic, P. & Rakic, P. (1999). Formation, elimination, and stabilization of synapses in the primate cerebral cortex. In Cognitive Neuroscience. A Handbook for the Field, 2nd edn, ed. M. S. Gazzaniga, pp. 23–32. Cambridge, MA: MIT Press
Brons, J. & Woody, C. (1980). Long-term changes in excitability of cortical neurons after Pavlovian conditioning and excitation. J. Neurophysiol., 44: 605–615
Buetefisch, C. M., Davis, B. C., Wise, S. P.. (2000). Mechanisms of use dependent plasticity in the human motor cortex. PNAS, 97: 3661–3665
Buonomano, D. V. & Merzenich, M. M. (1998). Cortical plasticity: from synapses to maps. Ann. Rev. Neurosci., 21: 149–186
Castro, C. A., Silbert, L. H., McNaughton, B. L. & Barnes, C. A. (1989). Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature, 342: 545
Cain, D. P., Hargreaves, E. L., Boon, F. & Dennison, Z. (1993). An examination of the relations between hioppocampal long-term potentiation, kindling, afterdischarge, and place learning in the water maze. Hippocampus, 3: 153–163
Castro-Alamancos, M. A., Donoghue, J. P. & Connors, B. W. (1995). Different forms of synaptic plasticity in the somatosensory and the motor areas of the neocortex. J. Neurosci., 15: 5324–5333
Chen, W., Hu, G. Y., Zhou, Y. D. & Wu, C. P. (1994). Two mechanisms underlying the induction of LTP in motor cortex of adult cat in vitro. Exp. Brain Res., 100: 149–154
Chen, C. & Tonegawa, S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci., 20: 157–184
Classen, J., Lippert, J., Wise, S. P., Hallet, M. & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol., 79: 1117–1123
Clugnet, M-C. & LeDoux, J. E. (1990). Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J. Neurosci., 10: 2818–2824
Collindridge, G. L., Kehl, S. J. & McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.), 334: 33–46
Comery, T. A., Stamoudis, C. X., Irwin, S. A. & Greenough, W. T. (1996). Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment. Neurobiol. Learn. Mem., 66: 93–96
Day, M. & Morris, R. G. M. (2001). Memory consolidation and NMDA receptors: discrepancy between genetic and pharmacological approaches. Science, 293: 755a
Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci., 17: 5046–5061
Donoghue, J. P. (1995). Plasticity of adult sensorimotor representations. Curr. Opin. Neurobiol., 5: 749–754
Donoghue, J. P., Suner, S. & Sanes, J. N. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesion. Exp. Brain Res., 79: 492–503
Donoghue, J. P., Hess, G. & Sanes, J. N. (1996). Substrates and mechanisms for learning in motor cortex. In Acquisition of Motor Behavior, ed. J. Bloedel, T. Ebner & S. P. Wise. Cambridge, MA: MIT Press
Dudek, S. M. & Bear, M. F. (1992). Homosynaptic long-term depression and effects of N-methyl-d-aspartate receptor blockade. Proc. Natl Acad. Sci., USA, 89: 4363–4367
Durand, G. M., Kovalchuk, Y. & Konnerth, A. (1996). LTP and functional synapse induction in developing hippocampus. Nature, 381: 71–75
Elgersma, Y. & Silva, A. J. (1999). Molecular mechanisms of synaptic plasticity and memory. Curr. Opin. Neurobiol., 9: 209–213
Engert, F. & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal longterm synaptic plasticity. Nature, 399: 66–70
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Nordborg, C., Peterson, D. A. & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nat. Medicine, 4: 1207
Gandolfo, F., Li, C-S. R., Benda, B. J., Scioppa, Padoa C. & Bizzi, E. (2000). Cortical correlates of learning in monkeys adapting to a new dynamical environment. PNAS, 97: 2259–2263
Geinisman, Y. (2000). Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb. Cortex, 10: 952–962
Gilbert, C. D., Das, A., Ito, M., Kapadia, M. & Westheimer, G. (1996). Spatial integration and cortical dynamics. PNAS, 93: 615–622
Goda, Y. & Stevens, C. F. (1996). Synaptic plasticity: the basis of particular type of learning. Curr. Biol. 6: 375–378
Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. (1998). Postsynaptically silent synapses in single neuron cultures. Neuron, 21: 1443–1451
Gould, E., McEven, B. S., Tanapat, P., Galea, L. A. & Fuchs, E. (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci., 17: 2492–2498
Gould, E., Tanapat, P., Hastings, N. B. & Shors, T. J. (1999a). Neurogenesis in the adulthood: a possible role in learning. Trends Cogn. Sci., 3: 186–192
Gould, E., Reeves, A. J., Fallah, M., Tanapat, P., Gross, C. G. & Fuchs, E. (1999b). Hippocampal neurogenesis in adult Old World primates. PNAS, 96: 5263–5267
Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T. J. (1999c). Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci., 2: 203–205
Gould, E., Reeves, A. J., Graziani, M. S. A. & Gross, C. G. (1999d). Neurogenesis in the neocortex of adult primates. Science, 286: 548–552
Grafton, S. T., Mazziotta, J. P., Presty, S., Friston, K. J., Frackowiak, R. S. J. & Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J. Neurosci., 12: 2542–2548
Grant, S. G., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P. & Kandel, E. R. (1992). Impaired longterm potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 258: 1903–1910
Hallett, M. (2001). Plasticity in the human motor cortex and recovery from stroke. Brain Res. Rev., 36: 169–174
He, Y., Janssen, W. G. M. & Morrison, J. H. (1998). Synaptic coexistence of AMPA and NMDA receptors in the rat hippocampus: a postembedding immunogold study. J. Neurosci. Res., 54: 444–449
Hebb, D. O. (1949). Organization of Behavior. New York: Wiley
Hess, G. & Donoghue, J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J. Neurophysiol., 71: 2543–2547
Hess, G. & Donoghue, J. P. (1996). Long-term depression of horizontal connections in rat motor cortex. Eur. J. Neurosci., 8: 658–665
Hess, G., Aizenman, C. D. & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol., 75: 1765–1778
Huntley, G. W. (1997). Correlations between patterns of horizontal connectivity and the extent of short-term representational plasticity in rat motor cortex. Cereb. Cortex, 7: 143–156
Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. (1989). Long-term potentiation in the motor cortex. Science, 245: 1385–1387
Isaac, J. T., Nicoll, R. A. & Malenka, R. C. (1995). Evidence for silent synapses: implications for the expression of LTP. Neuron, 15: 427–434
Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. (1997). Silent synapses during development of thalamocortical inputs. Neuron, 18: 269–280
Jacobs, K. M. & Donoghue, J. P. (1991). Reshaping the cortical motor map by unmasking latent intracortical connection. Science, 251: 944–947
Jeffrey, K. J. & Morris, R. G. M. (1993). Cumulative LTP in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus, 3: 133–140
Jones, T. A., Klintsova, A. Y., Kilman, V. L., Sirevaag, A. M. & Greenough, W. T. (1997). Induction of multiple synapses by experience in the visual cortex of adult rats. Neurobiol. Learn. Mem., 68: 13–20
Kaas, J. H. (1991). Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci., 14: 137–167
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377: 155–158
Keller, A. (1993). Intrinsic synaptic organization of the motor cortex. Cereb. Cortex, 3: 430–441
Keller, A., Weintraub, N. D. & Miyashita, E. (1996). Tactile experience determines the organization of movement representations in rat motor cortex. Neuroreport, 7: 2373–2378
Kentros, C., Hargreaves, E., Hawkins, R. D., Kandel, E. R., Shapiro, M. & Muller, R. V. (1998). Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science, 280: 2121–2126
Kirkwood, A. & Bear, M. F. (1994). Homosynaptic long-term depression in the visual cortex. J. Neurosci., 14: 3404–3412
Kirkwood, A., Rioult, M. G. & Bear, M. F. (1996). Experience-dependent modification of synaptic plasticity in visual cortex. Nature, 381: 526–528
Kleim, J. A., Lussing, E., Schwarz, E. R., Comery, T. A., & Greenough, W. T. (1996). Synaptogenesis and fos expression in the motor cortex of adult rat after motor skill learning. J. Neurosci., 16: 4529–4535
Kleim, J. A., Vij, K., Ballard, D. H. & Greenough, W. T. (1997). Learning dependent synaptic modifications in the cerebellar cortex of the adult rat persist at least four weeks. J. Neurosci., 17: 717–721
Kleim, J. A., Barbay, S. & Nudo, R. J. (1998a). Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol., 80: 3321–3325
Kleim, J. A., Swain, R. A., Armstrong, K. E., Napper, R. M. A., Jones, T. A. & Greenough, W. T. (1998b). Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol. Learn. Mem., 69: 274–289
Klintsova, A. Y. & Greenough, W. T. (1999). Synaptic plasticity in cortical systems. Curr. Opin. Neurobiol., 9: 203–208
Kornack, D. R. & Racik, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. PNAS, 96: 5768–5773
Korol, D. L., Abel, T. W., Church, L. T., Barnes, C. A. & McNaughton, B. L. (1993). Hippocampal synaptic enhancement and spatial learning in the Morris swim task. Hippocampus, 3: 127–132
Levy, W. B. & Steward, O. (1979). Synapses as associative memory elements in the hippocampal formation. Brain Res., 175: 233–245
Li, H., Weiss, S. R. B., Chuang, D-M., Post, R. M. & Rogawski, M. A. (1998). Bidirectional synaptic plasticity in the rat basolateral amygdala: characterization of an activity–dependent switch sensitive to the presynaptic metabotropic glutamate receptor antagonist 2S-alpha-ethylglutamic acid. J. Neurosci., 18: 1662–1670
Liao, D. N., Hessler, A. & Malinow, R. (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA 1 region of hippocampal slice. Nature, 375: 400–404
Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. (1999). Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci., 2: 37–43
Lynch, G. S., Dundwiddie, T. & Gribkoff, V. (1977). Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature, 266: 737–739
McBain, C. & Mayer, M. (1994). NMDA receptor structure and function. Physiol. Rev., 74: 723–760
McGaugh, J. L. & Izquierdo, I. (2000). The contribution of pharmacology to research on the mechanisms of memory formation. TIPS, 21: 208–210
McKernan, M. G. & Shinnick-Gallagher, P. (1997). Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature, 390: 607–611
McNaughton, B. L., Barnes, C. A., Rao, G., Baldwin, J. & Rasmussen, M. (1986). Long-term enhancement of hippocampal synaptic transmission and the acquisition of spatial information. J. Neurosci., 6: 563–571
Malenka, R. (1998). Silent synapses in the hippocampus and cortex. In Central Synapses: Quantal Mechanisms and Plasticity., ed. D. S. Faber, H. Korn, S. J. Redman, S. M. Thompson & J. S. Altman, pp. 207–214. Strasbourg, France: Human Frontier Science Program
Malenka, R. C. & Nicoll, R. A. (1997). Silent synapses speak up. Neuron, 19: 552–553
Malenka, R. C. & Nicoll, R. A. (1999). Long-term potentiation – a decade of progress. Science, 285: 1870–1874
Maletic-Savatic, M. & Svoboda, K. S. (1999). Rapid dendritic morphogenesis in CA 1 hippocampal dendrites induced by synaptic activity. Science, 283: 1923–1927
Malinow, R. (1998). Silent synapses in three forms of central plasticity. In Central Synapses: Quantal Mechanisms and Plasticity, ed. D. S. Faber, H. Korn, S. J. Redman, S. M. Thompson & J. S. Altman: pp. 226–234. Strasbourg, France: Human Frontier Science Program
Margolis, D. J., Donoghue, J. P., Rioult, M. G. & Rioult-Pedotti, M.-S. (1999). Role of NMDA receptors in skill learning and learning-induced synaptic strengthening. Soc. Neurosci. Abstr., 25: 888
Martin, S. J. & Morris, R. G. M. (2001). Cortical plasticity: it's all the range!Curr. Biol., 11: R57–R59
Martin, S. J., Grimwood, P. D. & Morris, R. G. M. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci., 23: 649–711
Marren, S. (1999). Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. TINS, 22: 561–567
Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. (1984). Voltage-dependent block by Mg2 of NMDA responses in spinal cord neurons. Nature, 309: 261–263
Mayford, M., Mansuy, I. M., Muller, R. U. & Kandel, E. R. (1997). Memory and behavior: a second generation of genetically modified mice. Curr. Biol., 7: R580–R589
Merzenich, M. M. & Shameshima, K. (1993). Cortical plasticity and memory. Curr. Opin. Neurobiol., 2: 187–196
Miller, S. & Mayford, M. (1999). Cellular and molecular mechanisms of memory: the LTP connections. Curr. Opin. Genet. Developm., 9: 333–337
Miller, E. K., Erikson, C. A. & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci., 16: 5154–5167
Morris, R. G. M. (1986). Selective impairment of learning and blockade of long-term potentiation by an NMDA receptor antagonist, AP 5. Nature, 319: 774–776
Morris, R. G. M. (1989). Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the NMDA receptor antagonist AP 5. J. Neurosci., 9: 3040–3057
Moser, E., Moser, M. B. & Andersen, P. (1993). Synaptic potentiation in the rat dentate gyrus during exploratory learning. Neuroreport, 5: 317–320
Moser, M. B., Trommald, M., Egeland, T. & Andersen, P. (1997). Spatial training in a complex environment and isolation alter the spine distribution differently in rat CA 1 pyramidal cells. J. Comp. Neurol., 380: 373–381
Moser, E. L., Krobert, K. A., Moser, M. B. & Morris, R. G. M. (1998). Impaired spatial learning after saturation of LTP. Science, 281: 2038–2042
Moyer, J. R., Thompson, L. T. & Disterhoft, J. F. (1996). Trace eyeblink conditioning increase CA 1 excitability in a transient and learning-specific manner. J Neurosci., 16: 5536–5546
Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L. & Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Exp. Brain Res., 136: 431–438
Muellbacher, W., Ziemann, U., Wissel, J.. (2002). Early consolidation in human primary motor cortex. Nature, 415: 640–644
Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurons. Nature, 307: 462–465
Nudo, R. J., Milliken, G. W., Jenkins, W. M. & Merzenich, M. M. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci., 16: 785–807
Nusser, Z. R., Laube, G., Roberts, J. B. D., Molnr, E. & Somogy, P. (1998). Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron, 21: 545–559
Pascual-Leone, A., Grafman, J. & Hallet, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263: 1287–1289
Plautz, E. J., Milliken, G. W. & Nudo, R. J. (2000). Effects of repetitive motor skill training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol. Learn. Mem., 74: 27–55
Petralia, R. S., Esteban, J. A., Wang, Y-X. et al. (1999). Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapse. Nat. Neurosci., 2: 31–36
Power, J. M., Thompson, L. T., Moyer, J. R. & Disterhoft, J. F. (1997). Enhanced synaptic transmission in CA 1 hippocampus after eyeblink conditioning. J. Neurophysiol., 78: 1185–1187
Rioult-Pedotti, M-S., Friedman, D., Hess, G. & Donoghue, J. P. (1998). Strengthening of horizontal cortical connections following skill learning. Nat. Neurosci., 1: 230–234
Rioult-Pedotti, M-S., Friedman, D. & Donoghue, J. P. (2000). Learning-induced LTP in neocortex. Science, 290: 533–536
Rioult-Pedotti, M-S. & Donoghue, J. P. (2003). Plasticity of the synaptic modification range with extended motor skill training. Submitted
Rioult-Pedotti, M. S. & Donoghue, J. P. (2002). Learning, retention and persistent strengthening of cortical synapses. Soc. Neurosci. Abstr.
Rogan, M. T., Staeubli, U. V. & LeDoux, J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390: 604–607
Roman, F. S., Truchet, B., Marchetti, E., Chaillan, F. A. & Soumireu-Mourat, B. (1999). Correlations between electrophysiological observations of synaptic plasticity modifications and behavioral performance in mammals. Prog. Neurobiol., 58: 61–87
Rousselot, P., Lois, C. & Alvarez-Buylla, A. (1995). Embryonic (PSA) N-CAM reveals chain of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J. Comp. Neurol., 351: 51–61
Rumpel, S., Hatt, H. & Gottmann, K. (1998). Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci., 18: 8863–8874
Saar, D., Grossman, Y. & Barkai, E. (1999). Reduced synaptic facilitation between pyramidal neurons in the piriform cortex after odor learning. J. Neurosci., 19: 8616–8622
Sakimura, K., Kutsuwada, T., Ito, I.. (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature, 373: 151–155
Sanes, J. N. & Donoghue, J. P. (1997). Static and dynamic organization of motor cortex. Adv. Neurol., 73: 277–296
Sanes, J. N. & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Ann. Rev. Neurosci., 23: 393–415
Sanes, J. N., Suner, S., Lando, J. F. & Donoghue, J. P. (1988). Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. PNAS, 85: 2003–2007
Sanes, J. N., Suner, S. & Donoghue, J. P. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp. Brain Res., 79: 479–491
Sanes, J. N., Wang, J. & Donoghue, J. P. (1992). Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cereb. Cortex, 2: 141–152
Saucier, D. & Cain, D. P. (1995). Spatial learning without NMDA receptor-dependent long-term potentiation. Nature, 378: 186–189
Shimizu, E., Tang, Y-P., Rampon, C. & Tsien, J. Z. (2000). NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science, 290: 1170–1174
Shors, T. J. & Matzel, L. D. (1997). Long-term potentiation: what's learning got to do with it?Behav. Brain Sci., 20: 597–655
Silva, A., Stevens, C. F., Tonegawa, S. & Wang, Y. (1992). Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science, 257: 201–206
Sorra, K. E. & Harris, K. M. (1998). Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA 1. J. Neurosci., 18: 658–671
Stevens, C. F. (1998). A million dollar question: does LTP = memory?Neuron, 20: 1–2
Sutherland, R. J., Dringenberg, H. C. & Hoesing, J. M. (1993). Induction of long-term potentiation at perforant path dentate synapses does not affect place learning or memory. Hippocampus, 3: 141–147
Tang, Y-P., Shimizu, E., Dube, G. R.. (1999). Genetic enhancement of learning and memory in mice. Nature, 401: 63–69
Teskey, G. C., Monfils, M-H., VandenBerg, P. M. & Kleim, J. A. (2002). Motor map expansion following repeated cortical and limbic seizures is related to synaptic potentiation. Cereb. Cortex, 12: 98–105
Thiels, E., Barrionuevo, G. & Berger, T. W. (1994). Excitatory stimulation during postsynaptic inhibition induces long-term depression in hippocampus in vivo. J. Neurophysiol., 72: 3009–3016
Thompson, L. T., Moyer, J. R. & Disterhoft, J. F. (1996). Transient changes in excitability of rabbit CA 3 neurons with a time course appropriate to support memory consolidation. J. Neurophysiol., 76: 1836–1849
Toni, N., Buchs, P-A., Nikonenko, I., Bron, C. R. & Mueller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402: 421–425
Trepel, C. & Racine, R. I., (1998). LTP in the neocortex of the adult, freely moving rat. Cereb. Cortex, 8: 719–729
Tsien, J. Z., Huerta, P. T. & Tonegawa, S. (1996). The essential role of hippocampal CA 1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87: 1327–1338
Turner, A. M. & Greenough, W. T. (1985). Differential rearing effects on rat visual cortex synapses, I. Synaptic and neuronal density and synapses per neuron. Brain Res., 329: 195–203
Villareal, D. M., Do, V., Haddad, E. & Derrick, B. E. (2002). NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat. Neurosci., 5: 48–52
Woody, C. D. (1986). Understanding the cellular basis of memory and learning. Annu. Rev. Psychol., 37: 433–493
Wu, G-Y., Malinow, R. & Cline, H. T., (1996). Maturation of a central glutamatergic synapse. Science, 274: 972–976