Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T07:38:02.215Z Has data issue: false hasContentIssue false

1 - The nature and mechanisms of plasticity

Published online by Cambridge University Press:  12 August 2009

Mengia-S. Rioult-Pedotti
Affiliation:
Department of Neuroscience, Brown University, Providence, RI, USA
John P. Donoghue
Affiliation:
Department of Neuroscience, Brown University, Providence, RI, USA
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

Cortical map plasticity

It is now well established that the functional organization of the cerebral cortex is plastic, that is, changes in organization occur throughout life in response to normal as well as abnormal experience. The potential for reorganization has been demonstrated in both sensory and motor areas of adult cortex, either as a consequence of trauma, pathological changes, manipulation of sensory experience, or learning. These changes can only be evaluated with reference to an extensive experimental base that has identified a repeatable representation pattern (e.g. somatotopy, tonotopy, or retinotopy), for which change can be detected. While the scope of changes are often at the edge of our technical capabilities to assess, there are striking examples of significant and rapid change (for reviews, see Sanes & Donoghue, 2000; Buonomano & Merzenich, 1998). There is an overwhelming belief that modifications in cortical organization emerge through changes in synaptic efficacy within the cortex and elsewhere in the nervous system. Further, these changes are have been closely linked to the phenomena called long-term potentiation (LTP) and long-term depression (LTD). This review deals mainly with the changes that have been detected in the motor cortex and their link to synaptic modification. Some of the most convincing evidence that learning and practice influences cortical organization and that learning operates through LTP/D-mediated mechanisms has come through work in the motor cortex. This work is also of profound significance to the medical community because it implies that the impaired or damaged motor cortex can be restructured through appropriate physical rehabilitation schemes or through pharmacological means that alter mechanisms accounting for LTP/D.

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 1 - 25
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, J. & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol., 124: 319–335CrossRefGoogle ScholarPubMed
Alvarez-Buylla, A. & Lois, C. (1995). Neuronal stem cells in the brain of adult vertebrates. Stem Cells, 13: 263–272CrossRefGoogle ScholarPubMed
Aou, S., Oomura, Y., Woody, C. D. & Nishino, H. (1988). Effects of behaviorally rewarding hypothalamic electrical stimulation on intracellularly recorded neuronal activity in the motor cortex of awake monkeys. Brain Res., 439: 31–38CrossRefGoogle ScholarPubMed
Aou, S., Woody, C. D. & Birt, D. (1992). Changes in the activity of units of the cat motor cortex with rapid conditioning and extinction of a compound eye blink movement. J. Neurosci., 12: 549–559CrossRefGoogle ScholarPubMed
Aroniadou, V. A. & Keller, A. (1995). Mechanisms of LTP induction in rat motor cortex in vitro. Cereb. Cortex, 5: 353–362CrossRefGoogle ScholarPubMed
Artola, A. & Singer, W. (1987). Long-term potentiation and NMDA receptors in rat visual cortex. Nature, 330: 649–652CrossRefGoogle ScholarPubMed
Artola, A., Broecher, S. & Singer, W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature, 347: 69–72CrossRefGoogle ScholarPubMed
Atwood, H. L. & Wojitowicz, J. M. (1999). Silent synapses in neural plasticity: current evidence. Learn. Mem., 6: 542–571CrossRefGoogle ScholarPubMed
Bailey, C. H. & Kandel, E. R. (1993). Structural changes accompanying memory storage. Ann. Rev. Physiol., 55: 397–426CrossRefGoogle ScholarPubMed
Bannerman, D. M., Good, M. A., Butcher, S. P., Ramsay, M. & Morris, R. G. M. (1995). Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature, 378: 182–186CrossRefGoogle ScholarPubMed
Baranyi, A. & Feher, O. (1978). Conditioned changes of synaptic transmission in the motor cortex of the cat. Exp. Brain Res., 33: 283–289CrossRefGoogle ScholarPubMed
Baranyi, A. & Feher, O. (1981). Long-term facilitation of excitatory synaptic transmission in single motor cortical neurons of the cat produced by repetitive pairing of synaptic potentials and action potentials following intracellular stimulation. Neurosci. Lett., 23: 303–308CrossRefGoogle ScholarPubMed
Baranyi, A., Szente, M. B. & Woody, C. D. (1991). Properties of associative long lasting potentiation induced by cellular conditioning in the motor cortex of conscious cats. Neuroscience, 42: 321–334CrossRefGoogle ScholarPubMed
Barnes, C. A., Jung, M. W., McNaughton, B. L., Korol, D. L., Andreasson, K. & Worley, P. F. (1994). LTP saturation and spatial learning disruption: effects of task variables and saturation levels. J. Neurosci., 14: 5793–5806CrossRefGoogle ScholarPubMed
Bliss, T. V. P. (1998). The saturation debate. Science, 281: 1975–1976CrossRefGoogle ScholarPubMed
Bliss, T. V. P. & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J. Physiol., 232: 331–356CrossRefGoogle Scholar
Black, J. E., Isaaks, K. R., Anderson, B. J., Alcantara, A. A. & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in the cerebral cortex of adult rats. PNAS, 87: 5568–5572CrossRefGoogle Scholar
Bourgeois, J-P., Goldman-Rakic, P. & Rakic, P. (1999). Formation, elimination, and stabilization of synapses in the primate cerebral cortex. In Cognitive Neuroscience. A Handbook for the Field, 2nd edn, ed. M. S. Gazzaniga, pp. 23–32. Cambridge, MA: MIT Press
Brons, J. & Woody, C. (1980). Long-term changes in excitability of cortical neurons after Pavlovian conditioning and excitation. J. Neurophysiol., 44: 605–615CrossRefGoogle Scholar
Buetefisch, C. M., Davis, B. C., Wise, S. P.. (2000). Mechanisms of use dependent plasticity in the human motor cortex. PNAS, 97: 3661–3665CrossRefGoogle Scholar
Buonomano, D. V. & Merzenich, M. M. (1998). Cortical plasticity: from synapses to maps. Ann. Rev. Neurosci., 21: 149–186CrossRefGoogle ScholarPubMed
Castro, C. A., Silbert, L. H., McNaughton, B. L. & Barnes, C. A. (1989). Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature, 342: 545CrossRefGoogle ScholarPubMed
Cain, D. P., Hargreaves, E. L., Boon, F. & Dennison, Z. (1993). An examination of the relations between hioppocampal long-term potentiation, kindling, afterdischarge, and place learning in the water maze. Hippocampus, 3: 153–163CrossRefGoogle ScholarPubMed
Castro-Alamancos, M. A., Donoghue, J. P. & Connors, B. W. (1995). Different forms of synaptic plasticity in the somatosensory and the motor areas of the neocortex. J. Neurosci., 15: 5324–5333CrossRefGoogle ScholarPubMed
Chen, W., Hu, G. Y., Zhou, Y. D. & Wu, C. P. (1994). Two mechanisms underlying the induction of LTP in motor cortex of adult cat in vitro. Exp. Brain Res., 100: 149–154CrossRefGoogle ScholarPubMed
Chen, C. & Tonegawa, S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci., 20: 157–184CrossRefGoogle ScholarPubMed
Classen, J., Lippert, J., Wise, S. P., Hallet, M. & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol., 79: 1117–1123CrossRefGoogle ScholarPubMed
Clugnet, M-C. & LeDoux, J. E. (1990). Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J. Neurosci., 10: 2818–2824CrossRefGoogle ScholarPubMed
Collindridge, G. L., Kehl, S. J. & McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.), 334: 33–46CrossRefGoogle Scholar
Comery, T. A., Stamoudis, C. X., Irwin, S. A. & Greenough, W. T. (1996). Increased density of multiple-head dendritic spines on medium-sized spiny neurons of the striatum in rats reared in a complex environment. Neurobiol. Learn. Mem., 66: 93–96CrossRefGoogle Scholar
Day, M. & Morris, R. G. M. (2001). Memory consolidation and NMDA receptors: discrepancy between genetic and pharmacological approaches. Science, 293: 755aCrossRefGoogle ScholarPubMed
Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci., 17: 5046–5061CrossRefGoogle ScholarPubMed
Donoghue, J. P. (1995). Plasticity of adult sensorimotor representations. Curr. Opin. Neurobiol., 5: 749–754CrossRefGoogle ScholarPubMed
Donoghue, J. P., Suner, S. & Sanes, J. N. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesion. Exp. Brain Res., 79: 492–503CrossRefGoogle Scholar
Donoghue, J. P., Hess, G. & Sanes, J. N. (1996). Substrates and mechanisms for learning in motor cortex. In Acquisition of Motor Behavior, ed. J. Bloedel, T. Ebner & S. P. Wise. Cambridge, MA: MIT Press
Dudek, S. M. & Bear, M. F. (1992). Homosynaptic long-term depression and effects of N-methyl-d-aspartate receptor blockade. Proc. Natl Acad. Sci., USA, 89: 4363–4367CrossRefGoogle ScholarPubMed
Durand, G. M., Kovalchuk, Y. & Konnerth, A. (1996). LTP and functional synapse induction in developing hippocampus. Nature, 381: 71–75CrossRefGoogle ScholarPubMed
Elgersma, Y. & Silva, A. J. (1999). Molecular mechanisms of synaptic plasticity and memory. Curr. Opin. Neurobiol., 9: 209–213CrossRefGoogle ScholarPubMed
Engert, F. & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal longterm synaptic plasticity. Nature, 399: 66–70CrossRefGoogle Scholar
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Nordborg, C., Peterson, D. A. & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nat. Medicine, 4: 1207CrossRefGoogle ScholarPubMed
Gandolfo, F., Li, C-S. R., Benda, B. J., Scioppa, Padoa C. & Bizzi, E. (2000). Cortical correlates of learning in monkeys adapting to a new dynamical environment. PNAS, 97: 2259–2263CrossRefGoogle ScholarPubMed
Geinisman, Y. (2000). Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb. Cortex, 10: 952–962CrossRefGoogle ScholarPubMed
Gilbert, C. D., Das, A., Ito, M., Kapadia, M. & Westheimer, G. (1996). Spatial integration and cortical dynamics. PNAS, 93: 615–622CrossRefGoogle ScholarPubMed
Goda, Y. & Stevens, C. F. (1996). Synaptic plasticity: the basis of particular type of learning. Curr. Biol. 6: 375–378CrossRefGoogle Scholar
Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. (1998). Postsynaptically silent synapses in single neuron cultures. Neuron, 21: 1443–1451CrossRefGoogle ScholarPubMed
Gould, E., McEven, B. S., Tanapat, P., Galea, L. A. & Fuchs, E. (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci., 17: 2492–2498CrossRefGoogle ScholarPubMed
Gould, E., Tanapat, P., Hastings, N. B. & Shors, T. J. (1999a). Neurogenesis in the adulthood: a possible role in learning. Trends Cogn. Sci., 3: 186–192CrossRefGoogle Scholar
Gould, E., Reeves, A. J., Fallah, M., Tanapat, P., Gross, C. G. & Fuchs, E. (1999b). Hippocampal neurogenesis in adult Old World primates. PNAS, 96: 5263–5267CrossRefGoogle Scholar
Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T. J. (1999c). Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci., 2: 203–205CrossRefGoogle Scholar
Gould, E., Reeves, A. J., Graziani, M. S. A. & Gross, C. G. (1999d). Neurogenesis in the neocortex of adult primates. Science, 286: 548–552CrossRefGoogle Scholar
Grafton, S. T., Mazziotta, J. P., Presty, S., Friston, K. J., Frackowiak, R. S. J. & Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J. Neurosci., 12: 2542–2548CrossRefGoogle ScholarPubMed
Grant, S. G., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P. & Kandel, E. R. (1992). Impaired longterm potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 258: 1903–1910CrossRefGoogle Scholar
Hallett, M. (2001). Plasticity in the human motor cortex and recovery from stroke. Brain Res. Rev., 36: 169–174CrossRefGoogle Scholar
He, Y., Janssen, W. G. M. & Morrison, J. H. (1998). Synaptic coexistence of AMPA and NMDA receptors in the rat hippocampus: a postembedding immunogold study. J. Neurosci. Res., 54: 444–4493.0.CO;2-3>CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). Organization of Behavior. New York: Wiley
Hess, G. & Donoghue, J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J. Neurophysiol., 71: 2543–2547CrossRefGoogle ScholarPubMed
Hess, G. & Donoghue, J. P. (1996). Long-term depression of horizontal connections in rat motor cortex. Eur. J. Neurosci., 8: 658–665CrossRefGoogle ScholarPubMed
Hess, G., Aizenman, C. D. & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol., 75: 1765–1778CrossRefGoogle ScholarPubMed
Huntley, G. W. (1997). Correlations between patterns of horizontal connectivity and the extent of short-term representational plasticity in rat motor cortex. Cereb. Cortex, 7: 143–156CrossRefGoogle Scholar
Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. (1989). Long-term potentiation in the motor cortex. Science, 245: 1385–1387CrossRefGoogle ScholarPubMed
Isaac, J. T., Nicoll, R. A. & Malenka, R. C. (1995). Evidence for silent synapses: implications for the expression of LTP. Neuron, 15: 427–434CrossRefGoogle ScholarPubMed
Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. (1997). Silent synapses during development of thalamocortical inputs. Neuron, 18: 269–280CrossRefGoogle ScholarPubMed
Jacobs, K. M. & Donoghue, J. P. (1991). Reshaping the cortical motor map by unmasking latent intracortical connection. Science, 251: 944–947CrossRefGoogle Scholar
Jeffrey, K. J. & Morris, R. G. M. (1993). Cumulative LTP in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus, 3: 133–140CrossRefGoogle Scholar
Jones, T. A., Klintsova, A. Y., Kilman, V. L., Sirevaag, A. M. & Greenough, W. T. (1997). Induction of multiple synapses by experience in the visual cortex of adult rats. Neurobiol. Learn. Mem., 68: 13–20CrossRefGoogle ScholarPubMed
Kaas, J. H. (1991). Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci., 14: 137–167CrossRefGoogle ScholarPubMed
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R. & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377: 155–158Google ScholarPubMed
Keller, A. (1993). Intrinsic synaptic organization of the motor cortex. Cereb. Cortex, 3: 430–441CrossRefGoogle ScholarPubMed
Keller, A., Weintraub, N. D. & Miyashita, E. (1996). Tactile experience determines the organization of movement representations in rat motor cortex. Neuroreport, 7: 2373–2378CrossRefGoogle ScholarPubMed
Kentros, C., Hargreaves, E., Hawkins, R. D., Kandel, E. R., Shapiro, M. & Muller, R. V. (1998). Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science, 280: 2121–2126CrossRefGoogle ScholarPubMed
Kirkwood, A. & Bear, M. F. (1994). Homosynaptic long-term depression in the visual cortex. J. Neurosci., 14: 3404–3412CrossRefGoogle ScholarPubMed
Kirkwood, A., Rioult, M. G. & Bear, M. F. (1996). Experience-dependent modification of synaptic plasticity in visual cortex. Nature, 381: 526–528CrossRefGoogle ScholarPubMed
Kleim, J. A., Lussing, E., Schwarz, E. R., Comery, T. A., & Greenough, W. T. (1996). Synaptogenesis and fos expression in the motor cortex of adult rat after motor skill learning. J. Neurosci., 16: 4529–4535CrossRefGoogle ScholarPubMed
Kleim, J. A., Vij, K., Ballard, D. H. & Greenough, W. T. (1997). Learning dependent synaptic modifications in the cerebellar cortex of the adult rat persist at least four weeks. J. Neurosci., 17: 717–721CrossRefGoogle ScholarPubMed
Kleim, J. A., Barbay, S. & Nudo, R. J. (1998a). Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol., 80: 3321–3325CrossRefGoogle Scholar
Kleim, J. A., Swain, R. A., Armstrong, K. E., Napper, R. M. A., Jones, T. A. & Greenough, W. T. (1998b). Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol. Learn. Mem., 69: 274–289CrossRefGoogle Scholar
Klintsova, A. Y. & Greenough, W. T. (1999). Synaptic plasticity in cortical systems. Curr. Opin. Neurobiol., 9: 203–208CrossRefGoogle ScholarPubMed
Kornack, D. R. & Racik, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. PNAS, 96: 5768–5773CrossRefGoogle ScholarPubMed
Korol, D. L., Abel, T. W., Church, L. T., Barnes, C. A. & McNaughton, B. L. (1993). Hippocampal synaptic enhancement and spatial learning in the Morris swim task. Hippocampus, 3: 127–132CrossRefGoogle ScholarPubMed
Levy, W. B. & Steward, O. (1979). Synapses as associative memory elements in the hippocampal formation. Brain Res., 175: 233–245CrossRefGoogle ScholarPubMed
Li, H., Weiss, S. R. B., Chuang, D-M., Post, R. M. & Rogawski, M. A. (1998). Bidirectional synaptic plasticity in the rat basolateral amygdala: characterization of an activity–dependent switch sensitive to the presynaptic metabotropic glutamate receptor antagonist 2S-alpha-ethylglutamic acid. J. Neurosci., 18: 1662–1670CrossRefGoogle ScholarPubMed
Liao, D. N., Hessler, A. & Malinow, R. (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA 1 region of hippocampal slice. Nature, 375: 400–404CrossRefGoogle Scholar
Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. (1999). Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci., 2: 37–43CrossRefGoogle ScholarPubMed
Lynch, G. S., Dundwiddie, T. & Gribkoff, V. (1977). Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature, 266: 737–739CrossRefGoogle ScholarPubMed
McBain, C. & Mayer, M. (1994). NMDA receptor structure and function. Physiol. Rev., 74: 723–760CrossRefGoogle ScholarPubMed
McGaugh, J. L. & Izquierdo, I. (2000). The contribution of pharmacology to research on the mechanisms of memory formation. TIPS, 21: 208–210Google ScholarPubMed
McKernan, M. G. & Shinnick-Gallagher, P. (1997). Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature, 390: 607–611CrossRefGoogle ScholarPubMed
McNaughton, B. L., Barnes, C. A., Rao, G., Baldwin, J. & Rasmussen, M. (1986). Long-term enhancement of hippocampal synaptic transmission and the acquisition of spatial information. J. Neurosci., 6: 563–571CrossRefGoogle ScholarPubMed
Malenka, R. (1998). Silent synapses in the hippocampus and cortex. In Central Synapses: Quantal Mechanisms and Plasticity., ed. D. S. Faber, H. Korn, S. J. Redman, S. M. Thompson & J. S. Altman, pp. 207–214. Strasbourg, France: Human Frontier Science Program
Malenka, R. C. & Nicoll, R. A. (1997). Silent synapses speak up. Neuron, 19: 552–553CrossRefGoogle ScholarPubMed
Malenka, R. C. & Nicoll, R. A. (1999). Long-term potentiation – a decade of progress. Science, 285: 1870–1874CrossRefGoogle ScholarPubMed
Maletic-Savatic, M. & Svoboda, K. S. (1999). Rapid dendritic morphogenesis in CA 1 hippocampal dendrites induced by synaptic activity. Science, 283: 1923–1927CrossRefGoogle Scholar
Malinow, R. (1998). Silent synapses in three forms of central plasticity. In Central Synapses: Quantal Mechanisms and Plasticity, ed. D. S. Faber, H. Korn, S. J. Redman, S. M. Thompson & J. S. Altman: pp. 226–234. Strasbourg, France: Human Frontier Science Program
Margolis, D. J., Donoghue, J. P., Rioult, M. G. & Rioult-Pedotti, M.-S. (1999). Role of NMDA receptors in skill learning and learning-induced synaptic strengthening. Soc. Neurosci. Abstr., 25: 888Google Scholar
Martin, S. J. & Morris, R. G. M. (2001). Cortical plasticity: it's all the range!Curr. Biol., 11: R57–R59CrossRefGoogle ScholarPubMed
Martin, S. J., Grimwood, P. D. & Morris, R. G. M. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci., 23: 649–711CrossRefGoogle ScholarPubMed
Marren, S. (1999). Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. TINS, 22: 561–567Google Scholar
Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. (1984). Voltage-dependent block by Mg2 of NMDA responses in spinal cord neurons. Nature, 309: 261–263CrossRefGoogle Scholar
Mayford, M., Mansuy, I. M., Muller, R. U. & Kandel, E. R. (1997). Memory and behavior: a second generation of genetically modified mice. Curr. Biol., 7: R580–R589CrossRefGoogle ScholarPubMed
Merzenich, M. M. & Shameshima, K. (1993). Cortical plasticity and memory. Curr. Opin. Neurobiol., 2: 187–196CrossRefGoogle Scholar
Miller, S. & Mayford, M. (1999). Cellular and molecular mechanisms of memory: the LTP connections. Curr. Opin. Genet. Developm., 9: 333–337CrossRefGoogle Scholar
Miller, E. K., Erikson, C. A. & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci., 16: 5154–5167CrossRefGoogle ScholarPubMed
Morris, R. G. M. (1986). Selective impairment of learning and blockade of long-term potentiation by an NMDA receptor antagonist, AP 5. Nature, 319: 774–776CrossRefGoogle Scholar
Morris, R. G. M. (1989). Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the NMDA receptor antagonist AP 5. J. Neurosci., 9: 3040–3057CrossRefGoogle Scholar
Moser, E., Moser, M. B. & Andersen, P. (1993). Synaptic potentiation in the rat dentate gyrus during exploratory learning. Neuroreport, 5: 317–320CrossRefGoogle ScholarPubMed
Moser, M. B., Trommald, M., Egeland, T. & Andersen, P. (1997). Spatial training in a complex environment and isolation alter the spine distribution differently in rat CA 1 pyramidal cells. J. Comp. Neurol., 380: 373–3813.0.CO;2-#>CrossRefGoogle Scholar
Moser, E. L., Krobert, K. A., Moser, M. B. & Morris, R. G. M. (1998). Impaired spatial learning after saturation of LTP. Science, 281: 2038–2042CrossRefGoogle Scholar
Moyer, J. R., Thompson, L. T. & Disterhoft, J. F. (1996). Trace eyeblink conditioning increase CA 1 excitability in a transient and learning-specific manner. J Neurosci., 16: 5536–5546CrossRefGoogle Scholar
Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L. & Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Exp. Brain Res., 136: 431–438CrossRefGoogle ScholarPubMed
Muellbacher, W., Ziemann, U., Wissel, J.. (2002). Early consolidation in human primary motor cortex. Nature, 415: 640–644CrossRefGoogle ScholarPubMed
Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurons. Nature, 307: 462–465CrossRefGoogle Scholar
Nudo, R. J., Milliken, G. W., Jenkins, W. M. & Merzenich, M. M. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci., 16: 785–807CrossRefGoogle ScholarPubMed
Nusser, Z. R., Laube, G., Roberts, J. B. D., Molnr, E. & Somogy, P. (1998). Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron, 21: 545–559CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Grafman, J. & Hallet, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263: 1287–1289CrossRefGoogle ScholarPubMed
Plautz, E. J., Milliken, G. W. & Nudo, R. J. (2000). Effects of repetitive motor skill training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol. Learn. Mem., 74: 27–55CrossRefGoogle ScholarPubMed
Petralia, R. S., Esteban, J. A., Wang, Y-X. et al. (1999). Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapse. Nat. Neurosci., 2: 31–36CrossRefGoogle Scholar
Power, J. M., Thompson, L. T., Moyer, J. R. & Disterhoft, J. F. (1997). Enhanced synaptic transmission in CA 1 hippocampus after eyeblink conditioning. J. Neurophysiol., 78: 1185–1187CrossRefGoogle Scholar
Rioult-Pedotti, M-S., Friedman, D., Hess, G. & Donoghue, J. P. (1998). Strengthening of horizontal cortical connections following skill learning. Nat. Neurosci., 1: 230–234CrossRefGoogle ScholarPubMed
Rioult-Pedotti, M-S., Friedman, D. & Donoghue, J. P. (2000). Learning-induced LTP in neocortex. Science, 290: 533–536CrossRefGoogle ScholarPubMed
Rioult-Pedotti, M-S. & Donoghue, J. P. (2003). Plasticity of the synaptic modification range with extended motor skill training. Submitted
Rioult-Pedotti, M. S. & Donoghue, J. P. (2002). Learning, retention and persistent strengthening of cortical synapses. Soc. Neurosci. Abstr.Google Scholar
Rogan, M. T., Staeubli, U. V. & LeDoux, J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390: 604–607CrossRefGoogle ScholarPubMed
Roman, F. S., Truchet, B., Marchetti, E., Chaillan, F. A. & Soumireu-Mourat, B. (1999). Correlations between electrophysiological observations of synaptic plasticity modifications and behavioral performance in mammals. Prog. Neurobiol., 58: 61–87CrossRefGoogle ScholarPubMed
Rousselot, P., Lois, C. & Alvarez-Buylla, A. (1995). Embryonic (PSA) N-CAM reveals chain of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J. Comp. Neurol., 351: 51–61CrossRefGoogle Scholar
Rumpel, S., Hatt, H. & Gottmann, K. (1998). Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci., 18: 8863–8874CrossRefGoogle ScholarPubMed
Saar, D., Grossman, Y. & Barkai, E. (1999). Reduced synaptic facilitation between pyramidal neurons in the piriform cortex after odor learning. J. Neurosci., 19: 8616–8622CrossRefGoogle ScholarPubMed
Sakimura, K., Kutsuwada, T., Ito, I.. (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature, 373: 151–155CrossRefGoogle ScholarPubMed
Sanes, J. N. & Donoghue, J. P. (1997). Static and dynamic organization of motor cortex. Adv. Neurol., 73: 277–296Google ScholarPubMed
Sanes, J. N. & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Ann. Rev. Neurosci., 23: 393–415CrossRefGoogle ScholarPubMed
Sanes, J. N., Suner, S., Lando, J. F. & Donoghue, J. P. (1988). Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. PNAS, 85: 2003–2007CrossRefGoogle ScholarPubMed
Sanes, J. N., Suner, S. & Donoghue, J. P. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp. Brain Res., 79: 479–491CrossRefGoogle ScholarPubMed
Sanes, J. N., Wang, J. & Donoghue, J. P. (1992). Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cereb. Cortex, 2: 141–152CrossRefGoogle ScholarPubMed
Saucier, D. & Cain, D. P. (1995). Spatial learning without NMDA receptor-dependent long-term potentiation. Nature, 378: 186–189CrossRefGoogle ScholarPubMed
Shimizu, E., Tang, Y-P., Rampon, C. & Tsien, J. Z. (2000). NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science, 290: 1170–1174CrossRefGoogle ScholarPubMed
Shors, T. J. & Matzel, L. D. (1997). Long-term potentiation: what's learning got to do with it?Behav. Brain Sci., 20: 597–655CrossRefGoogle Scholar
Silva, A., Stevens, C. F., Tonegawa, S. & Wang, Y. (1992). Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science, 257: 201–206CrossRefGoogle ScholarPubMed
Sorra, K. E. & Harris, K. M. (1998). Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA 1. J. Neurosci., 18: 658–671CrossRefGoogle Scholar
Stevens, C. F. (1998). A million dollar question: does LTP = memory?Neuron, 20: 1–2CrossRefGoogle ScholarPubMed
Sutherland, R. J., Dringenberg, H. C. & Hoesing, J. M. (1993). Induction of long-term potentiation at perforant path dentate synapses does not affect place learning or memory. Hippocampus, 3: 141–147CrossRefGoogle ScholarPubMed
Tang, Y-P., Shimizu, E., Dube, G. R.. (1999). Genetic enhancement of learning and memory in mice. Nature, 401: 63–69CrossRefGoogle ScholarPubMed
Teskey, G. C., Monfils, M-H., VandenBerg, P. M. & Kleim, J. A. (2002). Motor map expansion following repeated cortical and limbic seizures is related to synaptic potentiation. Cereb. Cortex, 12: 98–105CrossRefGoogle ScholarPubMed
Thiels, E., Barrionuevo, G. & Berger, T. W. (1994). Excitatory stimulation during postsynaptic inhibition induces long-term depression in hippocampus in vivo. J. Neurophysiol., 72: 3009–3016CrossRefGoogle ScholarPubMed
Thompson, L. T., Moyer, J. R. & Disterhoft, J. F. (1996). Transient changes in excitability of rabbit CA 3 neurons with a time course appropriate to support memory consolidation. J. Neurophysiol., 76: 1836–1849CrossRefGoogle Scholar
Toni, N., Buchs, P-A., Nikonenko, I., Bron, C. R. & Mueller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402: 421–425CrossRefGoogle Scholar
Trepel, C. & Racine, R. I., (1998). LTP in the neocortex of the adult, freely moving rat. Cereb. Cortex, 8: 719–729CrossRefGoogle Scholar
Tsien, J. Z., Huerta, P. T. & Tonegawa, S. (1996). The essential role of hippocampal CA 1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87: 1327–1338CrossRefGoogle Scholar
Turner, A. M. & Greenough, W. T. (1985). Differential rearing effects on rat visual cortex synapses, I. Synaptic and neuronal density and synapses per neuron. Brain Res., 329: 195–203CrossRefGoogle ScholarPubMed
Villareal, D. M., Do, V., Haddad, E. & Derrick, B. E. (2002). NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat. Neurosci., 5: 48–52CrossRefGoogle Scholar
Woody, C. D. (1986). Understanding the cellular basis of memory and learning. Annu. Rev. Psychol., 37: 433–493CrossRefGoogle ScholarPubMed
Wu, G-Y., Malinow, R. & Cline, H. T., (1996). Maturation of a central glutamatergic synapse. Science, 274: 972–976CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×