Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T04:27:29.751Z Has data issue: false hasContentIssue false

7 - Lesions of cortex and post-stroke ‘plastic’ reorganization

Published online by Cambridge University Press:  12 August 2009

Paolo M. Rossini
Affiliation:
Clinica Neurologica Università Campus Bio-Medico, Rome, Italy; AFaR Dept. Neuroscience, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy; IRCCS Centro S. Giovanni di Dio, Brescia, Italy
Joachim Liepert
Affiliation:
Department of Neurology, University of Hamburg, Germany
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

General introduction

Stroke is still the third cause of death and the first cause of chronic, highly disabling disease because of the frequent neurological sequelae affecting sensorimotor integration, movement programming and execution, walking, language, balance, mood and sensory perception. It is a well-accepted notion that, following the acute ischemic block of blood perfusion, there is a central core of dead neurons circumscribed by a shell of so-called ischemic penumbra, where the neurons adjacent to the damaged core are functionally blocked but still alive, because of the suboptimal flow from arterioles and capillaries and collaterals from the bed of vessels in the lesional periphery. This situation is of relatively brief duration (from hours to few days) and is followed either by a full recovery of the non-functioning, but still living, neurons (with a rapid, partial or total restoration of the lost functions) or by a complete loss of the perilesional contingent of brain cells with consequent stabilization of the clinical picture, i.e. the presence of more or less severe deficits. Several mechanisms contribute to the final volume of the lesioned tissue; from what can be inferred from the ischemia/reperfusion animal model, they include: ‘inflammatory-like’ reactions in which cytokines (mainly interleukin-1 and tumour necrosis factor) attract polymorphonuclear leukocytes, which create mechanical obstruction to erythrocytes' circulation by adherence to corresponding endothelial cell ligands, as well as becoming a source of oxygen free radicals (including nitric oxide, superoxide and peroxynitrite; del Zoppo & Garcia, 1995); later, a platelet activating factor induces platelets aggregation in the damaged area of microcirculation; in the core of the ischemic area, neuronal death may be mediated by the effects of excitatory neurotransmitters, e.g. glutamate which promotes calcium influx in the injured cells, and the accumulation of lactic acid as the result of a metabolic switch to anaerobiosis (Garcia et al., 1994).

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 166 - 203
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, G., Morena, M., Dall' Agata, D., Abbruzzese, M. & Favale, E. (1991). Motor evoked potentials (MEPs) in lacunar syndromes. Electroencephalogr. Clin. Neurophysiol., 81: 202–208Google Scholar
Ahonen, J. P., Jehkonen, M., Dastidar, P., Molnár, G. & Häkkinen, V. (1998). Cortical silent period evoked by transcranial magnetic stimulation in ischemic stroke. Electroencephalogr. Clin. Neurophysiol., 109: 224–229CrossRefGoogle ScholarPubMed
Alagona, G., Delvaux, V., Gérard, P.. (2001). Ipsilateral motor responses to focal transcranial magnetic stimulation in healthy subjects and acute-stroke patients. Stroke, 32: 1304–1309CrossRefGoogle ScholarPubMed
Andrews, R. J., Bringas, J. R., Alonzo, G., Salamat, M. S., Khoshyomn, S. & Gluck, D. S. (1993). Corpus collosotomy effects on cerebral blood flow and evoked potentials (transcallosal dischisis). Neurosci. Lett., 154: 9–12CrossRefGoogle Scholar
Andrews, R. J. (1991). Transhemispheric diaschisis. Stroke, 22: 943–949CrossRefGoogle ScholarPubMed
Arac, N., Sagduyu, A., Binai, S. & Ertekin, C. (1994). Prognostic value of transcranial magnetic stimulation in acute stroke. Stroke, 25: 2183–2186CrossRefGoogle ScholarPubMed
Backman, C. L., Harris, S. R., Chisholm, J-A. M. & Monette, A. (1997). Single-subject research in rehabilitation: a review of studies using AB, withdrawal, multiple baseline, and alternating treatment designs. Arch. Phys. Med. Rehabil., 78: 1145–1153CrossRefGoogle Scholar
Binkofski, F., Seitz, R. J., Arnold, S., Classen, J., Benecke, R. & Freund, H. J. (1996). Thalamic metabolism and corticospinal tract integrity determine motor recovery in stroke. Ann. Neurol., 39: 460–470CrossRefGoogle ScholarPubMed
Blakemore, S. J., Goodbody, S. J. & Wolpert, D. M. (1998). Predicting the consequences of our own actions: the role of sensorimotor context estimation. J. Neurosci., 18: 7511–7518CrossRefGoogle ScholarPubMed
Blakemore, S. J., Frith, C. D. & Wolpert, D. M. (1999). Spatio-temporal prediction modulates the perception of self-produced stimuli. J. Cogn. Sci., 11: 551–559Google ScholarPubMed
Bornschlag, M. & Asanuma, H. (1987). Importance of the projection from the sensory to the motor cortex for recovery of motor function following partial thalamic lesion in the monkey. Brain Res., 437: 121–30CrossRefGoogle Scholar
Braune, H. J. & Fritz, C. (1995). Transcranial magnetic stimulation-evoked inhibition of voluntary muscle activity (silent period) is impaired in patients with ischemic hemispheric lesion. Stroke, 26: 550–553CrossRefGoogle ScholarPubMed
Buchkremer-Ratzmann, I. & Witte, O. W. (1997). Extended brain disinhibition following small photothrombotic lesions in rat frontal cortex. Neuroreport, 8: 519–522CrossRefGoogle ScholarPubMed
Buchkremer-Ratzmann, I., August, M., Hagemann, G. & Witte, O. W. (1996). Electrophysiological transcortical diaschisis after acute photothrombosis in rat brain. Stroke, 27: 1005–1111CrossRefGoogle Scholar
Bütefisch, C., Hummelsheim, H., Denzler, P. & Mauritz, K-H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J. Neurol. Sci., 130: 59–68CrossRefGoogle ScholarPubMed
Cantello, R., Gianelli, M., Civardi, C. & Mutani, R. (1992). Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology, 42: 1951–1959Google ScholarPubMed
Cao, Y., D'Olhaberriague, L., Vikingstad, E. M.. (1998). Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke, 29: 112–122CrossRefGoogle ScholarPubMed
Caramia, M. D., Iani, C. & Bernardi, G. (1996). Cerebral plasticity after stroke as revealed by ipsilateral responses to magnetic stimulation. Neuroreport, 7: 1756–1760CrossRefGoogle ScholarPubMed
Caramia, M. D., Palmieri, M. G., Giacomini, P., Iani, C., Dally, L. & Silvestrini, M. (2000). Ipsilateral activation of the unaffected motor cortex in patients with hemiparetic stroke. Clin. Neurophysiol., 111: 1990–1996CrossRefGoogle ScholarPubMed
Catano, A., Houa, M., Caroyer, J. M., Ducarne, H. & Noel, P. (1995). Magnetic transcranial stimulation in non-haemorrhagic sylvian strokes: interest of facilitation for early functional prognosis. Electroencephalogr. Clin. Neurophysiol., 97: 349–354CrossRefGoogle ScholarPubMed
Catano, A., Houa, M., Caroyer, J. M., Ducarne, H. & Noel, P. (1996). Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. Electroencephalogr. Clin. Neurophysiol., 101: 233–239CrossRefGoogle ScholarPubMed
Catano, A., Houa, M. & Noel, P. (1997a). Magnetic transcranial stimulation: dissociation of excitatory and inhibitory mechanisms in acute strokes. Electroencephalogr. Clin. Neurophysiol., 105: 29–36CrossRefGoogle Scholar
Catano, A., Houa, M. & Noel, P. (1997b). Magnetic transcranial stimulation: clinical interest of the silent period in acute and chronic stages of stroke. Electroencephalogr. Clin. Neurophysiol., 105: 290–296CrossRefGoogle Scholar
Chen, R., Corwell, B., Yaseen, Z., Hallett, M. & Cohen, L. G. (1998). Mechanisms of cortical reorganization in lower-limb amputees. J. Neurosci., 18: 3443–3450CrossRefGoogle ScholarPubMed
Chollet, F., DiPiero, V., Wise, R. J., Brooks, D. J., Dolan, R. J. & Frackowiak, R. S. (1991). The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann. Neurol., 29: 63–71CrossRefGoogle ScholarPubMed
Cicinelli, P., Traversa, R., Bassi, A., Scivoletto, G. & Rossini, P. M. (1997a). Interhemispheric differences of hand muscle representation in human motor cortex. Muscle Nerve, 20: 535–5423.0.CO;2-A>CrossRefGoogle Scholar
Cicinelli, P., Traversa, R. & Rossini, P. M. (1997b). Post-stroke reorganization of brain motor output to the hand: a 2–4 month follow-up with focal magnetic transcranial stimulation. Electroencephalogr. Clin. Neurophysiol., 105: 438–450CrossRefGoogle Scholar
Cicinelli, P., Traversa, R., Oliveri, M.. (2000). Intracortical excitatory and inhibitory phenomena to paired transcranial magnetic stimulation in healthy subjects: differences between the right and left hemisphere. Neurosci. Lett., 288: 171–174CrossRefGoogle ScholarPubMed
Classen, J., Schnitzler, A., Binkowski, F.. (1997). The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic stroke. Brain, 120: 605–619CrossRefGoogle Scholar
Cohen, L. G., Roth, B. J., Nilsson, J.. (1990). Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr. Clin. Neurophysiol., 75: 350–357CrossRefGoogle ScholarPubMed
Martinez, Cruz A., Munoz, J. & Palacios, F. (1998). The muscle inhibitory period by transcranial magnetic stimulation. Study in stroke patients. Electromyogr. Clin. Neurophysiol., 38: 189–192Google Scholar
Martinez, Cruz A., Tejada, J. & Tejedor, Dietz E. (1990). Motor hand recovery after stroke. Prognostic yield of early transcranial magnetic stimulation. Electromyogr. Clin. Neurophysiol., 39: 405–410Google Scholar
Darian-Smith, I., Goodwin, A., Sugitami, M. & Heywood, J.(1985). Scanning a texture surface with the fingers: events in sensorimotor cortex. In Hand Function and the Neocortex, ed. A. W. Goodwin & I. Darian-Smith, pp. 17–43. Berlin: Springer. EBR suppl. 10CrossRef
Del Gratta, C., Penna, Della S., Tartaro, A.. (2000). Topographic organisation of the human primary and secondary somatosensory areas: an fMRI study. Neuroreport, 26: 2035–2043CrossRefGoogle Scholar
del Zoppo, G. J. & Garcia, J. H. (1995). PMN leukocyte adhesion in cerebrovascular ischemia. In Physiology and Pathophysiology of Leukocyte Adhesion, ed. D. N. Granger & G. Schimdt-Schonbein, pp. 408–433. New York: Oxford University Press
Dettmers, C., Stephan, K. M., Lemon, R. N. & Frackowiak, R. S. J. (1997). Reorganization of the executive motor system after stroke. Cerebrovasc. Dis., 7: 187–200CrossRefGoogle Scholar
Di Lazzaro, V., Oliviero, A., Profice, P., Saturno, E., Pilato, F. & Tonali, P. (1999). Motor cortex excitability changes within 8 hours after ischemic stroke may predict the functional outcome. Eur. J. Emerg. Med., 6: 119–121CrossRefGoogle ScholarPubMed
D'Olhaberriague, L., Gamissans, Espadaler J. M., Marrugat, J.. (1997). Transcranial magnetic stimulation as a prognostic tool in stroke. J. Neurol. Sci., 147: 73–80CrossRefGoogle ScholarPubMed
Dominkus, M., Grisold, W. & Jelinek, V. (1990). Transcranial electrical motor evoked potentials as a prognostic indicator for motor recovery in stroke patients. J. Neurol. Neurosurg. Psychiatry, 53: 745–748CrossRefGoogle ScholarPubMed
Dum, R. P. R. & Strick, P. L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci., 11: 667–689CrossRefGoogle ScholarPubMed
Escudero, J. V., Sancho, J., Bautista, D., Escudero, M. & Lopez-Trigo, J. (1998). Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke, 29: 1854–1859CrossRefGoogle ScholarPubMed
Faig, J. & Busse, O. (1996). Silent period evoked by transcranial magnetic stimulation in unilateral thalamic infarcts. J. Neurol. Sci., 142: 85–92CrossRefGoogle ScholarPubMed
Ferbert, A., Vielhaber, S., Meincke, U. & Buchner, H. (1992). Transcranial magnetic stimulation in pontine infarction: correlation to degree of paresis. J. Neurol. Neurosurg. Psychiatry, 55: 294–299CrossRefGoogle ScholarPubMed
Feys, H., Hees, J., Bruyninckx, F., Mercelis, R. & Weerdt, W. (2000). Value of somatosensory and motor evoked potentials in predicting arm recovery after a stroke. J. Neurol. Neurosurg. Psychiatry, 68: 323–331CrossRefGoogle Scholar
Fries, W., Daneck, A. & Witt, T. N. (1991). Motor responses after transcranial electrical stimulation of cerebral hemispheres with degenerated pyramidal tract. Ann. Neurol., 29: 646–649CrossRefGoogle ScholarPubMed
Fries, W., Danek, A., Scheidtnann, K. & Hamburger, C. (1993). Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain, 116: 369–382CrossRefGoogle ScholarPubMed
Fritz, C., Braune, H. J., Pylatiuk, C. & Pohl, M. (1997). Silent period following transcranial magnetic stimulation: a study of intra- and inter-examiner reliability. Electroncephalogr. Clin. Neurophysiol., 105: 235–240CrossRefGoogle Scholar
Fuhr, P., Cohen, L. G., Roth, B. J. & Hallett, M. (1991a). Latency of motor evoked potentials to focal transcranial stimulation varies as a function of scalp positions stimulated. Electroencephalogr. Clin. Neurophysiol., 81: 81–89CrossRefGoogle Scholar
Fuhr, P., Agostino, R. & Hallett, M. (1991b). Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr. Clin. Neurophysiol., 81: 257–262CrossRefGoogle Scholar
Garcia, J. H., Liu, K. F., Yoshida, Y., Lian, J., Chen, S. & del Zoppo, G. J. (1994). Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am. J. Pathol., 144: 188–199Google Scholar
Glassman, R. B. & Malamut, B. L. (1976). Recovery from electroencephalographic slowing and reduced evoked potentials after somatosensory cortical damage in cats. Behav. Biol., 17: 333–354CrossRefGoogle ScholarPubMed
Hari, R. & Ilmoniemi, R. J. (1986). Cerebral magnetic fields. CRC Critical Rev. Biomed. Eng., 14: 93126Google ScholarPubMed
Hari, R., Hämäläinen, M., Ilmoniemi, R. & Lounasmaa, O. V. (1991). MEG versus EEG localization test (Letter to the Editor). Ann. Neurol., 30: 222–224CrossRefGoogle Scholar
Hari, R., Karhu, J., Hamalainen, M.. (1993). Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur. J. Neurosci., 5: 724–734CrossRefGoogle ScholarPubMed
Haug, B. A., Schönle, P. W., Knobloch, C. & Köhne, M. (1992). Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol., 85: 158–160CrossRefGoogle ScholarPubMed
Heald, A., Bates, D., Cartlidge, N. E., French, J. M. & Miller, S. (1993). Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain, 116: 1371–1385CrossRefGoogle ScholarPubMed
Heiss, W. D. & Graf, R. (1994). The ischemic penumbrae. Curr. Opin. Neurol., 7: 11–19CrossRefGoogle Scholar
Hendricks, H. T., Hageman, G. & Limbeek, J. (1997). Prediction of recovery from upper extremity paralysis after stroke by measuring evoked potentials. Scand. J. Rehabil. Med., 29: 155–159Google ScholarPubMed
Holsapple, J. W., Preston, J. B. & Strick, P. L. (1990). Origin of thalamic inputs to the ‘hand’ representation in the primary motor cortex. Soc. Neurosci. Abstr., 16: 425Google Scholar
Hummelsheim, H. & Hauptmann, B. (1999). Transcranial magnetic stimulation and motor rehabilitation. Electroencephalogr. Clin. Neurophysiol. Suppl., 51: 221–232Google ScholarPubMed
Jacobs, K. M. & Donoghue, J. P. (1991). Reshaping the cortical motor map by unmasking latent intracortical connections. Science, 251: 944–947CrossRefGoogle ScholarPubMed
Jones, E. G. (1986). Connectivity of the primate sensory-motor cortex. In Cerebral Cortex, ed. E. G. Jones & A. Peters, vol. 5, pp. 113–183. New York: PlenumCrossRef
Jones, T. A. & Schallert, T. (1994). Use-dependent growth of pyramidal neurons after neocortical damage. J. Neurosci., 14: 2140–2152CrossRefGoogle ScholarPubMed
Jones, E. G., Coulter, J. D. & Hendry, S. H. C. (1978). Intracortical connectivity of architectonic fields in the somatic sensory motor and parietal cortex of monkeys. J. Comp. Neurol., 181: 291–348CrossRefGoogle ScholarPubMed
Kelly, J. P. (1985). In Principles of Neural Science. ed. E. R. Kandel & J. H. Schwartz 2nd. edn, pp. 187–195. New York: Elsevier
Kinouchi, H., Sharp, F. R., Chan, P. H.. (1994). MK-801 inhibits the induction of immediate early genes in cerebral cortex, thalamus, and hippocampus, but not in substantia nigra following middle cerebral artery occlusion. Neurosci. Lett., 179: 111–114CrossRefGoogle Scholar
Kopp, B., Kunkel, A., Muehlnickel, W., Villringer, K., Taub, E. & Flor, H. (1999). Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport, 10: 807–810CrossRefGoogle ScholarPubMed
Kujirai, T., Caramia, M. D., Rothwell, J. C.. (1993). Corticocortical inhibition in human motor cortex. J. Physiol., 471: 501–519CrossRefGoogle ScholarPubMed
Kukowski, B. & Haug, B. (1992). Quantitative evaluation of the silent period, evoked by transcranial magnetic stimulation during sustained muscle contraction, in normal man and in patients with stroke. Electromyogr. Clin. Neurophysiol., 32: 373–378Google ScholarPubMed
Lemon, R. H. & Porter, R. (1976). Afferent input to movement-related precentral neurones in conscious monkey. Proc. R. Soc. Lond. Ser. B, 194: 313–339CrossRefGoogle Scholar
Levy, C. E., Nichols, D. S., Schmalbrock, P. M., Keller, P. & Chakerss, D. W. (2001). Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movement therapy. Am. J. Phys. Med. Rehabil., 80: 4–12CrossRefGoogle ScholarPubMed
Liepert, J.Tegenthoff, M. & Malin, J-P.(1995). Changes of postexcitatory inhibition after transcranial magnetic stimulation in the course of hemiparesis. Neurol. Psychol. Brain Res., 4: 1–6Google Scholar
Liepert, J., Classen, J., Cohen, L. G. & Hallett, M. (1998a). Task-dependent changes of intracortical inhibition. Exp. Brain Res., 118: 421–426CrossRefGoogle Scholar
Liepert, J., Miltner, W. H. R., Bauder, H.. (1998b). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci. Lett., 250: 5–8CrossRefGoogle Scholar
Liepert, J., Bauder, H., Miltner, W. H. R., Taub, E. & Weiller, C. (2000a). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31: 1210–1216CrossRefGoogle Scholar
Liepert, J., Gräf, S., Uhde, I., Leidner, O. & Weiller, C. (2000b). Training-induced changes of motor cortex representations in stroke patients. Acta Neurol. Scand., 101: 321–326CrossRefGoogle Scholar
Liepert, J., Hamzei, F. & Weiller, C. (2000c). Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve, 23: 1761–17633.0.CO;2-M>CrossRefGoogle Scholar
Liepert, J., Storch, P., Fritsch, A. & Weiller, C. (2000d). Motor cortex disinhibition in acute stroke. Clin. Neurophysiol., 111: 671–676CrossRefGoogle Scholar
Liepert, J., Uhde, I., Gräf, S., Leidner, O. & Weiller, C. (2001). Motor cortex plasticity during forced use therapy in stroke patients. J. Neurol., 248: 315–321CrossRefGoogle ScholarPubMed
Macdonell, R. A., Donnan, G. A. & Bladin, P. F. (1989). A comparison of somatosensory evoked and motor evoked potentials in stroke. Ann. Neurol., 25: 68–73CrossRefGoogle ScholarPubMed
Maclin, E. L., Rose, D. F., Knight, J. E., Orrison, W. W. & Davis, L. E. (1994). Somatosensory evoked magnetic fields in patients with stroke. Electroencephalogr. Clin. Neurophysiol., 91: 468–475CrossRefGoogle ScholarPubMed
Marshall, R. S., Perera, G. M., Lazar, R. M.. (2000). Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke, 31: 656–661CrossRefGoogle ScholarPubMed
Mauguiere, F., Merlet, I., Forss, N.. (1997). Activation of a distributed somatosensory cortical network in the human brain. A dipole modeling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. Electroencephalogr. Clin. Neurophysiol., 104: 281–289CrossRefGoogle Scholar
Nakasato, N., Levesque, M. F., Barth, D. S., Baumgartner, C., Rogers, R. L. & Sutherling, W. W. (1994). Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy in humans. Electroencephalogr. Clin. Neurophysiol., 91: 171–178CrossRefGoogle ScholarPubMed
Nelles, G., Spiekermann, G., Jueptner, M.. (1999a). Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke, 30: 1510–1516CrossRefGoogle Scholar
Nelles, G., Spiekermann, G., Jueptner, M.. (1999b). Evolution of functional reorganization in hemiplegic stroke: a serial positron emission tomographic activation study. Ann. Neurol., 46: 901–9093.0.CO;2-7>CrossRefGoogle Scholar
Netz, J., Lammers, T. & Hömberg, V. (1997). Reorganization of motor output in the non-affected hemisphere after stroke. Brain, 120: 1579–1586CrossRefGoogle ScholarPubMed
Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272: 1791–1794CrossRefGoogle ScholarPubMed
Nunez, P. L., Srinivasan, R., Westdorp, A. F.. (1997). EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol., 103: 499–515CrossRefGoogle ScholarPubMed
Okada, Y. (1985). Discrimination of localized and distributed current dipole sources and localized single and multiple sources. In Biomagnetism: Applications and Theory, ed. H. Weinberg, G. Stroink & T. Katila, pp. 266–272. New York: Pergamon Press
Oliveri, M., Rossini, P. M., Pasqualetti, P.. (1999). Interhemispheric asymmetries in the perception of unimanual and bimanual cutaneous stimuli. A study using transcranial magnetic stimulation. Brain, 122: 1721–1729CrossRefGoogle ScholarPubMed
Oliveri, M., Caltagirone, C., Filippi, M. M.. (2000). Paired transcranial magnetic stimulation protocols reveals a pattern of inhibition and facilitation in the human parietal cortex. J. Physiol., 529: 461–468CrossRefGoogle Scholar
Palmer, E., Ashby, P. & Hajek, V. E. (1992). Ipsilateral fast corticospinal pathways do not account for recovery in stroke. Ann. Neurol., 32: 519–525CrossRefGoogle Scholar
Pantano, P., Formisano, R., Ricci, M.. (1996). Motor recovery after stroke. Morphological and functional brain alterations. Brain, 119: 1849–1857CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Cohen, L. G., Brasil-Neto, J. P., Valls-Sole, J. & Hallett, M. (1994). Differentiation of sensorimotor neuronal structures responsible for induction of motor evoked potentials, attenuation in detection of somatosensory stimuli, and induction of sensation of movement by mapping of optimal current directions. Electroencephalogr. Clin. Neurophysiol., 93: 230–236CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Dang, N., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A. & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol., 74: 1037–1045CrossRefGoogle ScholarPubMed
Pennisi, G., Rapisarda, G., Bella, R.. (1999). Absence of response to early transcranial magnetic stimulation in ischemic stroke patients: prognostic value for hand motor recovery. Stroke, 30: 2666–2670CrossRefGoogle ScholarPubMed
Péréon, Y., Aubertin, P. & Guihenuc, P. (1995). Prognostic significance of electrophysiological investigations in stroke patients: somatosensory and motor evoked potentials and sympathetic skin response. Neurophysiol. Clin., 25: 146–157CrossRefGoogle ScholarPubMed
Pizzella, V., Tecchio, F., Romani, G. L. & Rossini, P. M. (1999). Functional localization of the sensory hand area with respect to the motor central gyrus knob. Neuroreport, 16: 3809–3814CrossRefGoogle Scholar
Price, C. J., Wise, R. J., Watson, J. D.. (1994). Brain activation during reading. The effects of exposure duration and task. Brain, 117: 1255–1269CrossRefGoogle Scholar
Puce, A., Constable, R. T., Luby, M. L.. (1995). Functional magnetic resonance imaging of the sensory and motor cortex: comparison with electrophysiological localization. J. Neurosurg., 83: 262–270CrossRefGoogle ScholarPubMed
Que, M., Schiene, K., Witte, O. W. & Zilles, K. (1999a). Widespread up-regulation of N-methyl-D-aspartate receptors after focal photothrombotic lesion in rat brain. Neurosci. Lett., 273: 77–80CrossRefGoogle Scholar
Que, M., Witte, O. W., Neumann-Haefelin, T., Schiene, K., Schroeter, M. & Zilles, K. (1999b). Changes in GABA (A) and GABA (B) receptor binding following cortical photothrombosis: a quantitative receptor autoradiographic study. Neuroscience, 93: 1233–1240CrossRefGoogle Scholar
Rapisarda, G., Bastings, E., Noordhout, Maertens A., Pennisi, G. & Delwaide, P. J. (1996). Can motor recovery in stroke patients be predicted by early transcranial magnetic stimulation?Stroke, 27: 2191–2196CrossRefGoogle ScholarPubMed
Reinecke, S., Lutzenburg, M., Hagemann, G., Bruehl, C., Neumann-Haefelin, T. & Witte, O. W. (1999). Electrophysiological transcortical diachisis after middle cerebral artery occlusion (MCAO) in rats. Neurosci. Lett., 261: 85–88CrossRefGoogle Scholar
Rizzolatti, G., Luppino, G. & Matelli, M. (1998). The organization of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol., 106: 283–296CrossRefGoogle ScholarPubMed
Roick, H., Giesen, H. J. & Benecke, R. (1993). On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp. Brain Res., 94: 489–498CrossRefGoogle ScholarPubMed
Romani, G. L. (1990). Advances in neuromagnetic topography and source localization. Brain Topogr., 3: 95–102CrossRefGoogle ScholarPubMed
Rosen, I. & Asanuma, H. (1972). Peripheral afferent inputs to the forelimb area of the monkey motor cortex: input–output relations. Exp. Brain Res., 14: 257–273CrossRefGoogle ScholarPubMed
Rossi, S., Pasqualetti, P., Tecchio, F., Sabato, A. & Rossini, P. M. (1998). Modulation of corticospinal output to human hand muscles following deprivation of sensory feedback. Neuroimage, 8: 163–175CrossRefGoogle ScholarPubMed
Rossini, P. M. (2000). Is transcranial magnetic stimulation of the motor cortex a prognostic tool for motor recovery after stroke?Stroke, 31: 1463–1464CrossRefGoogle ScholarPubMed
Rossini, P. M. (2001). Brain redundancy: responsivity or plasticity?Ann. Neurol., 48: 128–1293.0.CO;2-9>CrossRefGoogle Scholar
Rossini, P. M. & Pauri, F. (2000). Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas ‘plastic’ reorganisation. Brain Res. Rev., 33: 131–154CrossRefGoogle ScholarPubMed
Rossini, P. M., Narici, L., Martino, G.. (1994). Analysis of interhemispheric asymmetries of somatosensory evoked magnetic fields to right and left median nerve stimulation. Electroencephalogr. Clin. Neurophysiol., 91: 476–482CrossRefGoogle ScholarPubMed
Rossini, P. M., Caltagirone, C., Castriota-Scandenberg, A.. (1998a). Hand motor cortical areas reorganization in stroke: a study with f, MEG and TCS maps. Neuroreport, 9: 2141–2146CrossRefGoogle Scholar
Rossini, P. M., Tecchio, F., Pizzella, V.. (1998b). On the reorganization of sensory hand areas after monohemispheric lesion: a functional (MEG)/anatomical (MRI) integrative study. Brain Res., 782: 153–166CrossRefGoogle Scholar
Rossini, P. M., Tecchio, F., Pizzella, V., Lupoi, D., Cassetta, E. & Pasqualetti, P. (2001). Interhemispheric differences of sensory hand areas after monohemispheric stroke: MEG/MRI integrative study. Neuroimage, 14: 474–485CrossRefGoogle ScholarPubMed
Rouiller, E. M., Yu, X. H., Moret, V., Tempini, A., Wiesendanger, M. & Liang, F. (1998). Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to the lesion. Eur J. Neurosci., 10: 729–740CrossRefGoogle ScholarPubMed
Schiene, K., Bruehl, C., Zilles, K.. (1996). Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J. Cereb. Blood Flow Metab., 16: 906–914CrossRefGoogle ScholarPubMed
Schwarz, S., Hacke, W. & Schwab, S. (2000). Magnetic evoked potentials in neurocritical care patients with acute brainstem lesions. J. Neurol. Sci., 172: 30–37CrossRefGoogle ScholarPubMed
Seitz, R. J. & Freund, H. J. (1997). Plasticity of the human motor cortex. Adv. Neurol., 73: 321–333Google ScholarPubMed
Seitz, R. J., Binkofski, F., Stephan, K. M., Benecke, R. & Freund, H. J. (1995). Prolonged muscular flaccidity. Electroncephalogr. Clin. Neurophysiol., 97: S230CrossRefGoogle Scholar
Seitz, R. J., Hoflich, P., Binkofski, F.. (1998). Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch. Neurol., 55: 1081–1088CrossRefGoogle ScholarPubMed
Shimizu, T., Filippi, M. M., Palmieri, M. G.. (1999). Modulation of intracortical excitability for different muscles in the upper extremity: paired magnetic stimulation study with focal versus non-focal coils. Clin. Neurophysiol., 110: 575–581CrossRefGoogle ScholarPubMed
Stepniewska, I., Preuss, T. M. & Kaas, J. (1993). Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of Owl monkey. J. Comp. Neurol., 330: 238–271CrossRefGoogle Scholar
Taub, E., Miller, N. E., Novack, T. A.. (1993). Technique to improve chronic motor deficit after stroke. Arch. Phys. Med. Rehabil., 74: 347–354Google ScholarPubMed
Taub, E., Crago, J. E., Burgio, L. D.. (1994). An operant approach to rehabilitation medicine: overcoming learned non-use by shaping. J. Exp. Anal. Behav., 61: 281–293CrossRefGoogle Scholar
Tecchio, F., Rossini, P. M., Pizzella, V., Cassetta, E. & Romani, G. L. (1997). Spatial properties and interhemispheric differences on the sensory hand cortical representation: a neuromagnetic study. Brain Res., 29: 100–108CrossRefGoogle Scholar
Tecchio, F., Pasqualetti, P., Pizzella, V., Romani, G. & Rossini, P. M. (2000). Morphology of somatosensory evoked fields: interhemispheric similarity as a parameter for physiological and pathological neural connectivity. Neurosci. Lett., 287: 203–206CrossRefGoogle Scholar
Timmerhuis, T. P., Hageman, G., Oosterloo, S. J. & Rozeboom, A. R. (1996). The prognostic value of cortical magnetic stimulation in acute middle cerebral artery infarction compared to other parameters. Clin. Neurol. Neurosurg. 98: 231–236CrossRefGoogle ScholarPubMed
Traversa, R., Cicinelli, P., Bassi, A., Rossini, P. M. & Bernardi, G. (1997). Mapping of motor cortical reorganization afeter stroke. Stroke, 28: 110–117CrossRefGoogle Scholar
Traversa, R., Cicinelli, P., Pasqualetti, P., Filippi, M. M. & Rossini, P. M. (1998). Follow-up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke. Brain Res., 803: 1–8CrossRefGoogle ScholarPubMed
Traversa, R., Cicinelli, P., Oliveri, M.. (2000). Neurophysiological follow-up of motor output in stroke patients. Clin. Neurophysiol., 111: 1695–1703CrossRefGoogle ScholarPubMed
Triggs, W. J., Cros, D., Macdonell, R. A. L., Chiappa, K. H., Fang, J. & Day, B. J. (1993). Cortical and spinal motor excitability during the transcranial magnetic stimulation silent period in humans. Brain Res., 628: 39–48CrossRefGoogle ScholarPubMed
Trompetto, C., Assini, A., Buccolieri, A., Marchese, R. & Abbruzzese, G. (2000). Motor recovery following stroke: a transcranial magnetic stimulation study. Clin. Neurophysiol., 111: 1860–1867CrossRefGoogle ScholarPubMed
Turton, A., Wroe, S., Trepte, N., Fraser, C. & Lemon, R. N. (1996). Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr. Clin. Neurophysiol., 101: 316–328CrossRefGoogle ScholarPubMed
Twitchell, T. E. (1951). The restoration of motor function following hemiplegia in man. Brain, 74: 443–480CrossRefGoogle ScholarPubMed
Vang, C., Dunbabin, D. & Kilpatrick, D. (1999). Correlation between functional and electrophysiological recovery in acute ischemic stroke. Stroke, 30: 2126–2130CrossRefGoogle ScholarPubMed
Giesen, H-J., Roick, H. & Benecke, R. (1994). Inhibitory actions of motor cortex following unilateral brain lesions as studied by magnetic brain stimulation. Exp. Brain Res., 99: 84–96CrossRefGoogle Scholar
Wall, P. D. (1980). Mechanisms of plasticity of connection following damage in adult mammalian nervous system. In Recovery of Function: Theoretical Consideration for Brain Injury Rehabilitation, ed. P. Bach-y-Rita, pp. 91–106. Bern: Hans Huber
Wall, P. D. & Egger, M. D. (1971). Formation of new connection in adult rat brains after partial deafferentation. Nature, 232: 542–45CrossRefGoogle Scholar
Wassermann, E. M., Pascual-Leone, A. & Hallett, M. (1994). Cortical motor representation of the ipsilateral hand and arm. Exp. Brain Res., 100: 121–132CrossRefGoogle Scholar
Weiller, C. (1998). Imaging recovery from stroke. Exp. Brain Res., 123: 13–17CrossRefGoogle Scholar
Weiller, C. & Rijntjes, M. (1999). Learning, plasticity, and recovery in the central nervous system. Exp. Brain Res., 128: 134–138CrossRefGoogle ScholarPubMed
Weiller, C. & Chollet, F., Friston, K. J., Wise, R. J. S. & Frackowiak, R. S. J. (1992). Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann. Neurol., 31: 463–472CrossRefGoogle ScholarPubMed
Wikström, H., Roine, R. O., Salonen, O.. (1997). Somatosensory evoked magnetic fields to median nerve stimulation: interhemispheric differences in a normal population. Electroencephalogr. Clin. Neurophysiol., 104: 480–487Google Scholar
Wikström, H.Roine, R. O., Aronen, H. J.. (2000). Specific changes in somatosensory evoked magnetic fields during recovery from sensorimotor stroke. Ann. Neurol., 47: 353–3603.0.CO;2-R>CrossRefGoogle ScholarPubMed
Witte, O. W. (1998). Lesion-induced plasticity as a potential mechanism for recovery and rehabilitative training. Curr. Opin. Neurol., 11: 655–662CrossRefGoogle ScholarPubMed
Wolf, S. L., Lecraw, D. E., Barton, L. A. & Jann, B. B. (1989). Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp. Neurol., 104: 125–132CrossRefGoogle ScholarPubMed
Yousry, T. A., Schmid, U. D., Alkadhi, H.. (1997). Localisation of the motor hand area to a knob on the precentral gyrus: a new landmark. Brain, 120: 141–157CrossRefGoogle Scholar
Ziemann, U., Lönnecker, S., Steinhoff, B. J. & Paulus, W. (1996). The effect of lorazepam on the motor cortical excitability in man. Exp. Brain Res., 109: 127–135CrossRefGoogle ScholarPubMed
Ziemann, U., Ishii, K., Borgheresi, A.. (1999). Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J. Physiol., 518: 895–906CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×