Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T07:11:38.337Z Has data issue: false hasContentIssue false

3 - Developmental plasticity of the corticospinal system

Published online by Cambridge University Press:  12 August 2009

Janet A. Eyre
Affiliation:
Department of Child Health, The Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

The young human brain is highly plastic and thus brain lesions during development interfere with the innate development of architecture, connectivity and mapping of functions and trigger modifications in structure, wiring and representations (for review, see Payne & Lomber, 2001). In childhood the motor cortex and/or corticospinal tract is the most common site of brain damage and the pre- or immediately peri-natal period is the most common time for brain damage to occur. It is now increasingly appreciated that the corticospinal system is capable of substantial reorganization after lesions and that such reorganization is likely to underlie spontaneous partial recovery of function (Terashima, 1995; Eyre et al., 2001, 2002; Raineteau & Schwab, 2001). In the mature nervous system synaptic plasticity in pre-existing pathways, and the formation of new circuits through collateral sprouting of lesioned and unlesioned fibres, are the principal components of this recovery process (Raineteau & Schwab, 2001). In the developing nervous system it is clear that there is much greater potential for plasticity, which may involve plasticity not only of the motor areas of the ipsilesional cerebral cortex but also of the contralesional cortex, corticospinal tract formation and the development of spinal cord networks (Benecke et al., 1991; Carr et al., 1993; Cao et al., 1994; Lewine et al., 1994; Maegaki et al., 1995; Terashima, 1995; Muller et al., 1997, 1998; Nirkko et al., 1997; Graveline et al., 1998; O'Sullivan et al., 1998; Hertz-Pannier, 1999; Holloway et al., 1999; Wieser et al., 1999; Balbi et al., 2000; Chu et al., 2000; Eyre et al., 2000a, 2001; Thickbroom et al., 2001).

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 62 - 89
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkadhi, H., SS, K, Crelier, G.. (2000). Plasticity of the human motor cortes in patients with arteriovenous malformations: a functional MR imaging study. Am. J. Neuroradiol., 21: 1423–1433Google Scholar
Armand, J., Olivier, E., Edgley, S. A. & Lemon, R. N. (1997). Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the Macaque monkey. J. Neurosci., 17: 261–266CrossRefGoogle ScholarPubMed
Balbi, P., Trojano, L., Ragno, M., Perretti, A. & Santoro, L. (2000). Patterns of motor control reorganization in a patient with mirror movements. Clin. Neurophysiol., 111: 318–325CrossRefGoogle Scholar
Barth, T. M. & Stanfield, B. B. (1990). The recovery of forelimb placing behaviour in rats with neonatal unilateral cortical damage involves the remaining hemisphere. J. Neurosci., 10: 3449–3459CrossRefGoogle ScholarPubMed
Bear, M. & Rittenhouse, C. (1999). Molecular basis for induction of ocular dominance plasticity. J. Neurobiol., 41: 83–913.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Benecke, R., Meyer, B. U. & Freund, H. J. (1991). Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation. Exp. Brain Res., 32: 419–426Google Scholar
Benowitz, L. I. & Routtenberg, A. (1997). GAP-43 an intrinsic determinant of neuronal development and plasticity. Trends Neurosci., 20: 84–91CrossRefGoogle ScholarPubMed
Bernasconi, A., Bernasconi, N., Lassonde, M.. (2000). Sensorimotor organization in patients who have undergone hemispherectomy: a study with 15 O-water PET and somatosensory evoked potentials. Neuroreport, 11: 3085–3090CrossRefGoogle ScholarPubMed
Bouza, H., Dubowitz, L., Rutherford, M. & Pennock J. (1994). Prediction of outcome in children with congenital hemiplegia: a magnetic resonance imaging study. Neuropediatrics, 25: 60–66CrossRefGoogle ScholarPubMed
Brittar, R., Pitto, A. & Reutens, D. (2000). Somatosensory representation in patients who have undergone hemispherectomy: a functional magnetic resonance imaging study. J. Neurosurg., 92: 45–51CrossRefGoogle Scholar
Cao, Y., Vikingstad, E. M., Huttenlocher, P. R., Towle, V. L. & Levin, D. N. (1994). Functional magnetic resonance studies of the reorganisation of human sensorimotor area after unilateral brain injury in the perinatal period. Proc. Natl Acad. Sci., USA, 91: 9612–9616CrossRefGoogle Scholar
Carr, L. J., Harrison, L. M., Evans, A. L. & Stephens, J. A. (1993). Patterns of central motor reorganisation in hemiplegic cerebral palsy. Brain, 166: 1223–1247CrossRefGoogle Scholar
Chollet, F., Di Piero, V., Wise, R.. (1991). The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann. Neurol., 29: 63–71CrossRefGoogle ScholarPubMed
Chu, D., Huttenlocher, P., Levin, D. & Towle, V. (2000). Reorganization of the hand somatosensory cortex following perinatal unilateral brain injury. Neuropediatrics, 2000: 63–69CrossRefGoogle Scholar
Commissiong, J. W. & Sauve, Y. (1993). Neurophysiological basis of functional recovery in the neonatal spinalised rat. Exp. Brain Res., 96: 473–479Google Scholar
Constantine-Paton, M., Cline, H. & Debski, E. (1990). Patterned activity, synaptic convergence and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci., 13: 129–154CrossRefGoogle ScholarPubMed
Constantine-Paton, M. & Cline, H. T. (1998). LTP and activity-dependent synaptogenesis: the more alike they are the more different they become. Curr. Opin. Neurobiol., 8: 139–148CrossRefGoogle ScholarPubMed
Curfs, M. H. J. M., Gribnan, A. A. M. & Dederen, P. J. W. C. (1994). Selective elimination of transient corticospinal projections in the rat cervical spinal grey matter. Brain Res. Dev. Brain Res., 78: 182–190CrossRefGoogle Scholar
Curfs, M. H. J. M., Gribnan, A. A. M., Dedren, P. J. W. C. & Bergervoet-Vernooij, H. W. M. (1995). Transient functional connections between the developing corticospinal tract and cervical spinal interneurone as demonstrated by c-fos immunohistochemistry. Dev. Brain Res., 87: 214–219CrossRefGoogle Scholar
Curfs, M. H. J. M., Gribnan, A. A. M. & Dederen, P. J. W. C. (1996). Direct cortico-motoneuronal synaptic contacts are present in the adult rat cervical spinal cord and are first established at postnatal day 7. Neurosci. Lett., 205: 123–126CrossRefGoogle ScholarPubMed
Dekkers, J. & Navarrete, R. (1998). Persistence of somatic and dendritic growth associated processes and induction of dendritic sprouting in motoneurones with neonatal axonal injury in rats. Neuroreport, 9: 1523–1527CrossRefGoogle Scholar
Eyre, J., Gibson, M., Koh, T. & Miller, S. (1989). Corticospinal transmission excited by electromagnetic stimulation of the brain is impaired in children with spastic hemiparesis but not those with quadriparesis. J. Physiol. (Lond.), 414: 9PGoogle Scholar
Eyre, J. A., Miller, S. & Ramesh, V. (1991). Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J. Physiol. (Lond.), 434: 441–452CrossRefGoogle ScholarPubMed
Eyre, J. A., Miller, S., Clowry, G. J., Conway, E. A. & Watts, C. (2000a). Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain, 123: 51–64CrossRefGoogle Scholar
Eyre, J., Taylor, J., Villagra, F. & Miller, S. (2000b). Exuberant ipsilateral corticospinal projections are present in the human newborn and withdrawn during development probably involving an activity-dependent process. Dev. Med. Child Neurol., 82: 12Google Scholar
Eyre, J., Taylor, J., Villagra, F., Smith, M. & Miller, S. (2001). Evidence of activity dependent withdrawal of corticospinal projections during development in man. Neurology, 57: 1543–1554CrossRefGoogle Scholar
Eyre, J. A., Miller, S. & Clowry, G. J. (2002). Development of the corticospinal tract in man. In Handbook of Transcranial Magnetic Stimulation, ed. A. Pascual-Leone, A. Davey, G. Wasserman, E. M. & J. Rothwell, pp. 235–249. London: Arnold
Galea, M. & Darian-Smith, I. (1994). Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb. Cortex, 4: 166–194CrossRefGoogle Scholar
Galea, M. P. & Darian-Smith, I. (1995). Postnatal maturation of the direct corticospinal projections in the macaque monkey. Cereb. Cortex, 5: 518–540CrossRefGoogle ScholarPubMed
Galea, M. P. & Darian-Smith, I. (1997). Corticospinal projection patterns following unilateral section of the cervical spinal cord in the newborn and juvenile macaque monkey. J. Comp. Neurol., 381: 282–3063.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Gibson, C. L., Arnott, G. A. & Clowry, G. C. (2000). Plasticity in the rat spinal cord seen in response to lesions to the motor cortex during development but not to lesions in maturity. Exp. Neurol., 166: 422–434CrossRefGoogle Scholar
Giuffrida, R. & Rustioni, A. (1989). Glutamate and aspartate immunoreactivity in corticospinal neurones of rats. J. Comp. Neurol., 288: 154–164CrossRefGoogle Scholar
Graveline, C. J., Mikulis, D. J., Crawley, A. P. & Hwang, P. A. (1998). Regionalised sensorimotor plasticity after hemispherectomy fMRI evaluation. Ped. Neurol., 19: 337–342CrossRefGoogle Scholar
Hagan, D. M., Lisgo, S., Strachan, T.. (1999). Mapping gene expression domains and neuronal cell differentiation during human embryonic forebrain development. Am. J. Hum. Gen., 65: 403Google Scholar
Haggqvist, G. (1937). Faseranalytische studien uber die pyramidenbahn. Acta Psychiat. Neurol., 12: 457–466CrossRefGoogle Scholar
Hertz-Pannier, L. (1999). Plasticite au cours de la maturation cerebrale: bases physogiques et etude par IRM fontionelle. J. Neuroradiol., 26: IS66–IS74Google Scholar
Hicks, S. & D'Amato, C. (1870). Motor-sensory and visual behaviour after hemispherectomy in newborn and mature rats. Exp. Neurol., 29: 416–438CrossRefGoogle Scholar
Hicks, S. & D'Amato, C. (1877). Locating corticospinal neurons by retrograde axonal transport of horseradish peroxidase. Exp. Neurol., 56: 410–420CrossRefGoogle Scholar
Holloway, V., Chong, W., Connelly, A., Harkness, W. & Gadian, D. (1999). Somatomotor fMRI and the presurgical evaluation of a case of focal epilepsy. Clin. Radiol., 54: 301–303CrossRefGoogle Scholar
Hubel, D. & Wiesel, T. (1970). Laminar and columnar distribution of geniculocortical fibres in the Macaque monkey. J. Comp. Neurol., 146: 421–450CrossRefGoogle Scholar
Hittenlocher, P. & Bonnier, C. (1994). Effects of changes in the periphery on development of the corticospinal system in the rat. Brain Res. Dev. Brain Res., 60: 253–260CrossRefGoogle Scholar
Huttenlocher, P. R. & Raichelson, R. M. (1989). Effects of neonatal hemispherectomy on location and number of corticospinal neurons in the rat. Dev. Brain Res., 47: 59–69CrossRefGoogle ScholarPubMed
Humphrey, T. (1960). The development of the pyramidal tracts in human fetuses, correlated with cortical differentiation. In Structure and Function of the Cortex, ed. D. B. Tower & J. B. Schade. Proceedings of the Second International Meeting of Neurobiologists, pp. 93–103. Amsterdam: Elsevier
Jansen, E. M. & Low, W. C. (1996). Quantitative analysis of contralateral hemisphere hypertrophy and sensorimotor performance in adult rats following unilateral neonatal ischemic–hypoxic brain injury. Brain Res., 708: 93–99CrossRefGoogle ScholarPubMed
Johnston, M-L. (1998). Selective vulnerability in the neonatal brain. Am. J. Neurol. Assoc., 44: 155–156CrossRefGoogle ScholarPubMed
Joosten, E. A., Schuitman, R. L., Vermelis, M. E. & Dederen, P. J. (1992). Postnatal development of the ipsilateral corticospinal component in rat spinal cord: a light and electron microscopic anterograde HRP study. J. Comp. Neurol., 326: 133–146CrossRefGoogle ScholarPubMed
Kalb, R. G. (1994). Regulation of motor neuron dendrite growth by NMDA receptor activation. Development, 120: 3063–3071Google ScholarPubMed
Kalb, R. G. & Fox, A. J. (1997). Synchronized over production of AMPA kainate and NMDA glutamate receptors during human spinal chord developent. J. Comp. Neurol., 384: 200–2103.0.CO;2-5>CrossRefGoogle Scholar
Kalb, R. G. & Hockfield, S. (1992). Activity-dependent development of spinal cord motor neurons. Brain Res. Rev., 17: 283–289CrossRefGoogle ScholarPubMed
Kartje-Tillotson, G., Neafsey, E. J. & Castro, A. J. (1985). Electrophysiological analysis of motor cortical plasticity after cortical lesions in newborn rats. Brain Res., 332: 103–111CrossRefGoogle ScholarPubMed
Kartje-Tillotson, G., O' Donoghue, D. L., Dauzvardis, M. F. & Castro, A. J. (1987). Pyramidotomy abolishes the abnormal movements evoked by intracortical microstimulation in adult rats that sustained neonatal cortical lesions. Brain Res., 415: 172–177CrossRefGoogle ScholarPubMed
Kuypers, H. G. J. M. (1962). Corticospinal connections: postnatal development in the rhesus monkey. Science, 138: 678–680CrossRefGoogle ScholarPubMed
LaMantia, A. S. & Rakic, P. (1990). Axonal over production and elimination in the corpus callosum of the developing rhesus monkey. J. Neurosci., 10: 2156–2175CrossRefGoogle Scholar
LaMantia, A. S. & Rakic, P. (1994). Axon over production and elimination in the anterior commissure of the developing rhesus monkey. J. Comp. Neurol., 340: 328–336CrossRefGoogle Scholar
Law, M., Cadman, D., Rosenbaum, P.. (1991). Neurodevelopmental therapy and upper limb extremity inhibitive casting for children with cerebral palsy. Dev. Med. Child Neurol., 33: 377–378Google ScholarPubMed
Leong, S. K. (1976). A qualitative electron microscopic investigation of the anomalous corticofugal projections following neonatal lesions in the albino rat. Brain Res., 107: 1–8CrossRefGoogle Scholar
Levinsson, A., Luo, X-L., Holmberg, H. & Schouenborg, J. (1999). Developmental tuning in a spinal nociceptive system: effects of neonatal spinalisation. J. Neurosci., 19: 10397–10403CrossRefGoogle Scholar
Lewine, J. D., Astur, R. S., Davis, L. E.. (1994). Cortical organization in adulthood is modified by neonatal infarct: a case study. Radiology, 190: 93–96CrossRefGoogle ScholarPubMed
Liu, C. & Chambers, W. (1964). An experimental study of the cortico-spinal system in the monkey. The spinal pathways and preterminal distribution of degenerating fibres following discrete lesions of the pre- and postcentral gyri and bulbar pyramid. J. Comp. Neurol., 123: 257–284CrossRefGoogle Scholar
McClung, J. R. & Castro, A. J. (1975). An ultrastructional study of ipsilateral corticospinal projections after frontal cortical lesions in newborn rats. Anat. Rec., 181: 417–418Google Scholar
McCouch, G. P., Austin, G. M. & Liu, C. Y. (1968). Sprouting as a cause of spasticity. J. Neurophysiol., 21: 205–216CrossRefGoogle Scholar
Maegaki, Y., Yamamoto, T. & Takeshita, K. (1995). Plasticity of central motor and sensory pathways in a case of unilateral extensive cortical dysplasia. Investigation of magnetic resonance imaging, transcranial magnetic stimulation and short latency somatosensory evoked potentials. Neurology, 45: 2255–2261CrossRefGoogle Scholar
Maier, L., Kalb, R. & Stelzner, D. (1995). NMDA antagonism during development extends sparing of hindlimb function to older spinally transected rats. Dev. Brain Res., 87: 135–144CrossRefGoogle ScholarPubMed
Martin, J. H. & Lee, S. J. (1999). Activity-dependent competition between developing corticospinal terminations. Neuroreport, 10: 2277–2282CrossRefGoogle ScholarPubMed
Martin, J. H., Kably, B. & Hacking, A. (1999). Activity-dependent development of cortical axon terminations in the spinal cord and brain stem. Exp. Brain Res., 125: 184–199CrossRefGoogle ScholarPubMed
Mayston, M., Harrison, L., Quinton, R.. (1997). Mirror movements in X-linked Kallmann's syndrome. I. A neurophysiological study. Brain, 120: 1199–1216CrossRefGoogle ScholarPubMed
Muller, R. A., Rothermel, R. D., Behen, M. E.. (1997). Plasticity of motor organization in children and adults. Neuroreport, 8: 3103–3108CrossRefGoogle ScholarPubMed
Muller, R. A., Watson, C. E., Muzik, O., Chakraborty, P. K. & Chugani, H. T. (1998). Motor organization after early middle cerebral artery stroke: a PET study. Pediatr. Neurol., 19: 294–298CrossRefGoogle ScholarPubMed
Nathan, P., Smith, M. & Deacon, P. V. (1990). The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain, 113: 303–324CrossRefGoogle ScholarPubMed
Netz, J., Lammers, T. & Hömberg, V. (1997). Reorganization of motor output in the non-affected hemisphere after stroke. Brain, 120: 1579–1586CrossRefGoogle ScholarPubMed
Nirkko, A. C., Rosler, K. M., Ozdoba, C.. (1997). Human cortical plasticity. Functional recovery with mirror movements. Neurology, 48: 1090–1093CrossRefGoogle ScholarPubMed
Nudo, R. & Milliken, G. (1996). Reorganisation of movement representations in primary motor cortex following focal ischaemic infarcts in adult squirrel monkeys. J. Neurophysiol., 75: 2144–2149CrossRefGoogle Scholar
Nudo, R., Wise, B., SiFuentes, F. & Milliken, G. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischaemic infarct. Science, 271: 1791–1794CrossRefGoogle Scholar
O'Hanlon, G. M. & Lowrie, M. B. (1993). Neonatal nerve injury causes long-term changes in growth and distribution of motoneuron dendrites in the rat. Neuroscience, 56: 453–464CrossRefGoogle ScholarPubMed
O'Hanlon, G. & Lowrie, M. (1995). Nerve injury in rats causes abnormalities in motoneurone dendritic fields that differ from those that follow neonatal nerve injury. Exp. Brain Res., 103: 243–250CrossRefGoogle Scholar
Olivier, E., Edgley, S., Armand, J. & Lemon, R. (1997). An electrophysiological study of the postnatal development of the corticospinal system in the Macaque monkey. J. Neurosci., 17: 267–276CrossRefGoogle ScholarPubMed
O'Rahily, R. & Müller, F. (1994). The Human Embryonic Brain: an Atlas of Developmental Stages. New York: Wiley-Liss
Osler, W. (1889). The cerebal palsies of children. In A Clinical Study from the Infirmary for Nervous Diseases. Philadelphia: Blakiston
O'Sullivan, M. (1991). The development of the phasic stretch reflex in man and its pathophysiology in central motor disorders. PhD Thesis, University of Newcastle upon Tyne
O'Sullivan, M. C., Eyre, J. A. & Miller, S. (1991). Radiation of the phasic stretch reflex in biceps brachii to muscles of the arm in man and its restriction during development. J. Physiol. (Lond.), 439: 529–543CrossRefGoogle ScholarPubMed
O'Sullivan, M. C., Miller, S. & Ramesh, V.. (1998). Abnormal development of biceps brachii phasic stretch reflex and persistence of short latency heteronymous excitatory responses to triceps brachii in spastic cerebral palsy. Brain, 121: 2381–2395CrossRefGoogle ScholarPubMed
Oudega, M., Varon, S. & Hagg, T. (1994). Distribution of corticospinal motor neurons in the postnatal rat: quantitative evidence for massive collateral elimination and modest cell death. J. Comp. Neurol., 347: 115–126CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Chugani, H. & Cohen, L. (1992). Reorganisation of human motor pathways following hemispherectomy. Ann. Neurol., 32: 261Google Scholar
Passingham, R. E., Perry, R. E. & Wilkinson, F. (1983). The long term effects of removal of sensorimotor cortex in infant and adult rhesus monkeys. Brain, 106: 675–705CrossRefGoogle Scholar
Payne, B. & Lomber, S. (2001). Reconstructing functional systems after lesions of the cerebral cortex. Nat. Rev. Neurosci., 2: 911–919CrossRefGoogle ScholarPubMed
Penn, A. & Shatz, C. (1999). Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr. Res., 45: 447–458CrossRefGoogle ScholarPubMed
Raineteau, O. & Schwab, M. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci., 2: 263–273CrossRefGoogle ScholarPubMed
Reinoso, B. S. & Castro, A. J. (1989). A study of corticospinal remodelling using retrograde fluorescent tracers in rats. Exp. Brain Res., 74: 387–394CrossRefGoogle ScholarPubMed
Rouiller, E. M., Liang, P., Moret, V. & Wiesendanger, M. (1991). Trajectory of redirected corticospinal axons after unilateral lesion of the sensorimotor cortex in neonatal rat; a phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. Exp. Neurol. 114: 53–65CrossRefGoogle Scholar
Rouiller, E. M., Yu, X. H., Moret, V.. (1998). Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to lesion. Eur. J. Neurosci., 10: 729–740CrossRefGoogle Scholar
Sabatini, U., Toni, D., Pantone, P.. (1994). Motor recovery after early brain damage. A case of brain plasticity. Stroke, 25: 514–517CrossRefGoogle ScholarPubMed
Scales, D. A. & Collins, G. H. (1972). Cerebral degeneration with hypertrophy of the contralateral pyramid. Arch. Neurol., 26: 186–190CrossRefGoogle ScholarPubMed
Sener, R. N. (1995). Unilateral cortical dysplasia associated with contralateral hyperplasia of the brainstem. Ped. Radiol., 25: 440–441CrossRefGoogle ScholarPubMed
Stanfield, B. B. (1992). The development of the corticospinal projection. Prog. Neurobiol., 38: 169–202CrossRefGoogle Scholar
Stanfield, B. B. & O'Leary, D. D. (1985). The transient corticospinal projection from the occipital cortex during postnatal development of the rat. J. Comp. Neurol., 238: 236–248CrossRefGoogle ScholarPubMed
Stanfield, B. B., O'Leary, D. D. M. & Fricks, C. (1982). Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature, 298: 371–373CrossRefGoogle ScholarPubMed
Taub, E., Uswatte, G. & Pidikiti, R. (1999). Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. J. Rehabil. Res. Dev., 36: 237–251Google ScholarPubMed
Terashima, T. (1995). Anatomy, development and lesion induced plasticity of rodent corticospinal tract. Neurosci. Res., 22: 139–161CrossRefGoogle ScholarPubMed
Thickbroom, G., Byrnes, M., Archer, S., Nagarajan, L. & Mastaglia, F. (2001). Differences in sensory and motor cortical organization following brain injury early in life. Ann. Neurol., 49: 320–327CrossRefGoogle ScholarPubMed
Uematsu, J., Ono, K., Yamano, T. & Shimanda, M. (1996). Development of corticospinal tract fibres and their plasticity II Neonatal unilateral cortical damage and subsequent development of the corticospinal tract in mice. Brain Dev., 18: 173–178CrossRefGoogle Scholar
Valtschanoff, J., Weinberg, R. & Rustioni, A. (1993). Amino acid immunoreactivity in corticospinal terminals. Exp. Brain Res., 93: 95–103CrossRefGoogle ScholarPubMed
Verhaart, J. W. C. (1950). Hypertrophy of the pes pedunculi and pyramid as a result of degeneration of the contralateral corticofugal fibre tracts. J. Comp. Neurol., 92: 1–15CrossRefGoogle Scholar
Wieser, H., Henke, K., Zumsteg, D.. (1999). Activation of the left motor cortex during left leg movements after right central resection. J. Neurol. Neurosurg. Psychiatry, 67: 487–491CrossRefGoogle ScholarPubMed
Wolpaw, J. & Tennissen, A. (2001). Activity-dependent spinal cord plasticity in health and disease. Annu. Rev. Neurosci., 24: 807–843CrossRefGoogle ScholarPubMed
Yasukawa, A. (1990). Upper extremity casting: adjunct treatment for a child with cerebral palsy hemiplegia. Am. J. Occup. Ther., 44: 840–846CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×