Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T08:34:15.002Z Has data issue: false hasContentIssue false

4 - Deficits and Adaptation of Eye-Hand Coordination During Visually Guided Reaching Movements in People with Amblyopia

from I - VISUAL AND VISUOMOTOR PLASTICITY

Published online by Cambridge University Press:  05 January 2013

Ewa Niechwiej-Szwedo
Affiliation:
The Hospital for Sick Children
Herbert C. Goltz
Affiliation:
The Hospital for Sick Children
Agnes M. F. Wong
Affiliation:
The Hospital for Sick Children
Jennifer K. E. Steeves
Affiliation:
York University, Toronto
Laurence R. Harris
Affiliation:
York University, Toronto
Get access

Summary

Introduction

Amblyopia is a visual impairment of one eye caused by inadequate use during early childhood and cannot be corrected by optical means (American Academy of Ophthalmology, 2007). Clinically, it is usually defined as a visual acuity of 20/30 or worse without any apparent structural abnormality in the affected eye. Amblyopia is a significant public health issue because it is the number one cause of monocular visual loss worldwide, affecting 3 to 5 percent of the population in the Western world (Attebo et al., 1998; Hillis, 1986). Because of its prevalence, the financial burden of amblyopia is enormous. A major U.S. study estimated that untreated amblyopia causes a yearly loss of US$7.4 billion in earning power and a corresponding decrease in the gross domestic product. An estimated US$341 million is spent each year to prevent and treat amblyopia (Membreno et al., 2002). Unfortunately, approximately 50 percent of patients do not respond to therapies (Holmes, Beck, et al., 2003; Holmes, Kraker, et al., 2003; The Pediatric Eye Disease Investigator Group [PEDIG], 2003; Repka et al., 2004, 2008; Scheiman et al., 2005). The personal cost of amblyopia is also substantial. People with amblyopia (including those treated successfully and those whose treatment failed) often have limited career choices and reduced quality of life such as reduced social contact, distance and depth estimation deficits, visual disorientation, and fear of losing vision in the better eye (van de Graaf et al., 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, R. A., Meyer, D. E. and Kornblum, S. (1990). Eye-hand coordination: oculomotor control in rapid aimed limb movements. J. Exp. Psychol. Hum. Percept. Perform., 16: 248–267.Google Scholar
American Academy of Ophthalmology. (2007). Amblyopia: Preferred Practice Pattern. http://one.aao.org/ce/practiceguidelines/ppp_content.aspx?cid=930d01f2-740b-433ea973-cf68565bd27b.
Attebo, K., Mitchell, P., Cumming, R., Smith, W., Jolly, N. and Sparkes, R. (1998). Prevalence and causes of amblyopia in an adult population. Ophthalmology, 105: 154–159.Google Scholar
Barnes, G. R., Hess, R. F., Dumoulin, S. O., Achtman, R. L. and Pike, G. B. (2001). The cortical deficit in humans with strabismic amblyopia. J. Physiol., 533: 281–297.Google Scholar
Bedard, P. and Proteau, L. (2004). On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements. Exp. Brain Res., 158: 75–85.Google Scholar
Bekkering, H. and Sailer, U. (2002). Commentary: coordination of eye and hand in time and space. Prog. Brain Res., 140: 365–373.Google Scholar
Bi, H., Zhang, B., Tao, X., Harwerth, R. S., Smith, , and E., L. III, and Chino, Y. M. (2011). Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cereb. Cortex, 21: 2033–2045.Google Scholar
Blakemore, C., Garey, L. J. and Vital-Durand, F. (1978). The physiological effects of monocular deprivation and their reversal in the monkey's visual cortex. J. Physiol., 283: 223–262.Google Scholar
Blohm, G. and Crawford, J. D. (2007). Computations for geometrically accurate visually guided reaching in 3-D space. J. Vis., 7(5): 1–22.Google Scholar
Bock, O. (1993). Localization of objects in the peripheral visual field. Behav. Brain Res., 56: 77–84.Google Scholar
Campbell, F.W. and Green, D. G. (1965). Monocular versus binocular visual acuity. Nature 208: 191–192.Google Scholar
Chandna, A., Pennefather, P. M., Kovacs, I. and Norcia, A. M. (2001). Contour integration deficits in anisometropic amblyopia. Invest. Ophthalmol. Vis. Sci., 42: 875–878.Google Scholar
Chino, Y. M., Smith, E. L. III, Yoshida, K., Cheng, H. and Hamamoto, J. (1994). Binocular interactions in striate cortical neurons of cats reared with discordant visual inputs. J. Neurosci., 14: 5050–5067.Google Scholar
Ciuffreda, K. J., Kenyon, R. V. and Stark, L. (1978). Increased saccadic latencies in amblyopic eyes. Invest. Ophthalmol. Vis. Sci., 17: 697–702.Google Scholar
Cortese, F., Wong, A., Goltz, H. C., Cheyne, D. O. and Wong, A. M. F. (2009). Neural interactions of pattern perception in human amblyopia: an MEG study. Neuroimage, 47: S86.Google Scholar
Crawford, J. D., Medendorp, W. P. and Marotta, J. J. (2004). Spatial transformations for eye-hand coordination. J. Neurophysiol., 92: 10–19.Google Scholar
Dean, M., Wu, S. W. and Maloney, L. T. (2007). Trading off speed and accuracy in rapid, goal-directed movements. J. Vis., 7: 10.11–10.12.Google Scholar
Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E. and Grafton, S. T. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat. Neurosci., 2: 563–567.Google Scholar
Desmurget, M. and Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci., 4: 423–431.Google Scholar
Desmurget, M., Pelisson, D., Rossetti, Y. and Prablanc, C. (1998). From eye to hand: planning goal-directed movements. Neurosci. Biobehav. Rev., 22: 761–788.Google Scholar
Diedrichsen, J., Shadmehr, R. and Ivry, R. B. (2009). The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci., 14: 31–39.Google Scholar
Elliott, D. (1991). Discrete vs. continuous visual control of manual aiming. Hum. Mov. Sci., 10: 393–418.Google Scholar
Elliott, D., Binsted, G. and Heath, M. (1999). The control of goal-directed limbmovements: correcting errors in the trajectory. Hum. Mov. Sci., 18: 121–136.Google Scholar
Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J. and Hayes, S. J. (2010). Goal-directed aiming: two components but multiple processes. Psychol. Bull., 136: 1023–1044.Google Scholar
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol., 47: 381–391.Google Scholar
Fronius, M., Sireteanu, R. and Zubcov, A. (2004). Deficits of spatial localization in children with strabismic amblyopia. Graefes Arch. Clin. Exp. Ophthalmol., 242: 827–839.Google Scholar
Giaschi, D. E., Regan, D., Kraft, S. P. and Hong, X. H. (1992). Defective processing of motion-defined form in the fellow eye of patients with unilateral amblyopia. Invest. Ophthalmol. Vis. Sci., 33: 2483–2489.Google Scholar
Grant, S., Melmoth, D. R., Morgan, M. J. and Finlay, A. L. (2007). Prehension deficits in amblyopia. Invest. Ophthalmol. Vis. Sci., 48: 1139–1148.Google Scholar
Grierson, L. E. and Elliott, D. (2008). Kinematic analysis of goal-directed aims made against early and late perturbations: an investigation of the relative influence of two online control processes. Hum. Mov. Sci., 27: 839–856.Google Scholar
Hansen, S., Elliott, D. and Tremblay, L. (2007). Online control of discrete action following visual perturbation. Perception, 36: 268–287.Google Scholar
Helsen, W. F., Elliott, D., Starkes, J. L. and Ricker, K. L. (1998). Temporal and spatial coupling of point of gaze and hand movements in aiming. J. Mot. Behav., 30: 249–259.Google Scholar
Helsen, W. F., Elliott, D., Starkes, J. L. and Ricker, K. L. (2000). Coupling of eye, finger, elbow and shoulder movements during manual aiming. J. Mot. Behav., 32: 241–248.Google Scholar
Henriques, D. Y., Medendorp, W. P., Gielen, C. C. and Crawford, J. D. (2003). Geometric computations underlying eye-hand coordination: orientations of the two eyes and the head. Exp. Brain Res., 152: 70–78.Google Scholar
Hess, R. F. and Howell, E. R. (1977). The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification. Vision Res., 17: 1049–1055.Google Scholar
Hess, R. F., McIlhagga, W. and Field, D. J. (1997). Contour integration in strabismic amblyopia: the sufficiency of an explanation based on positional uncertainty. Vision Res., 37: 3145–3161.Google Scholar
Hess, R. F., Thompson, B., Gole, G. and Mullen, K. T. (2009). Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur. J. Neurosci., 29: 1064–1070.Google Scholar
Hillis, A. (1986). Amblyopia: prevalent, curable, neglected. Public Health Rev., 14: 213–235.Google Scholar
Ho, C. S., Giaschi, D. E., Boden, C., Dougherty, R., Cline, R. and Lyons, C. (2005). Deficient motion perception in the fellow eye of amblyopic children. Vision Res., 45: 1615–1627.Google Scholar
Holmes, J. M., Beck, R. W., Kraker, R. T., Cole, S. R., Repka, M. X., Birch, E. E., Felius, J., Christiansen, S. P., Coats, D. K. and Kulp, M. T. (2003). Impact of patching and atropine treatment on the child and family in the amblyopia treatment study. Arch. Ophthalmology, 121: 1625–1632.Google Scholar
Holmes, J. M., Kraker, R. T., Beck, R. W., Birch, E. E., Cotter, S. A., Everett, D. F., Huertle, R. W., Quinn, G. E., Repka, M. X., Scheiman, M. M. and Wallace, D. K. (2003). A randomized trial of prescribed patching regimens for treatment of severe amblyopia in childrenOphthalmology, 110: 2075–2087.Google Scholar
Holopigian, K., Blake, R. and Greenwald, M. J. (1986). Selective losses in binocular vision in anisometropic amblyopes. Vision Res., 26: 621–630.Google Scholar
Imamura, K., Richter, H., Fischer, H., Lennerstrand, G., Franzen, O., Rydberg, A., Andersson, J., Schneider, H., Onoe, H., Watanabe, Y. and Løanström, B. (1997). Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neurosci Lett., 225: 173–176.Google Scholar
Johansson, R. S., Westling, G., Backstrom, A. and Flanagan, J. R. (2001). Eye-hand coordination in object manipulation. J. Neurosci., 21: 6917–6932.Google Scholar
Khan, M. A., Franks, I. M., Elliott, D., Lawrence, G. P., Chua, R., Bernier, P. M., Hansen, S. and Weeks, D. J. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neurosci. Biobehav. Rev., 30: 1106–1121.Google Scholar
Kiorpes, L., Kiper, D. C., O'Keefe, L. P., Cavanaugh, J. R. and Movshon, J. A. (1998). Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J. Neurosci., 18: 6411–6424.Google Scholar
Kozma, P. and Kiorpes, L. (2003). Contour integration in amblyopic monkeys. Vis. Neurosci., 20: 577–588.Google Scholar
Land, M., Mennie, N. and Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28: 1311–1328.Google Scholar
Levi, D. M. and Harwerth, R. S. (1977). Spatiotemporal interaction in anisometropic and strabismic amblyopia. Invest. Ophthalmol. Vis. Sci., 16: 90–95.Google Scholar
Levi, D. M., Harwerth, R. S. and Smith, E. L. III,. (1979). Humans deprived of normal binocular vision have binocular interactions tuned to size and orientation. Science, 206: 852–854.Google Scholar
Levi, D. M. and Klein, S. A. (1983). Spatial localization in normal and amblyopic vision. Vision Res., 23: 1005–1017.Google Scholar
Levi, D. M., Klein, S. A. and Wang, H. (1994). Discrimination of position and contrast in amblyopic and peripheral vision. Vision Res., 34: 3293–3313.Google Scholar
Levi, D. M.,Waugh, S. J. and Beard, B. L. (1994). Spatial scale shifts in amblyopia. Vision Res., 34: 3315–3333.Google Scholar
Levi, D. M., Yu, C., Kuai, S. G. and Rislove, E. (2007). Global contour processing in amblyopia. Vision Res., 47: 512–524.Google Scholar
Li, X., Dumoulin, S. O., Mansouri, B. and Hess, R. F. (2007). Cortical deficits in human amblyopia: their regional distribution and their relationship to the contrast detection deficit. Invest. Ophthalmol. Vis. Sci., 48: 1575–1591.Google Scholar
Loftus, A., Servos, P., Goodale, M. A., Mendarozqueta, N. and Mon-Williams, M. (2004). When two eyes are better than one in prehension: monocular viewing and end-point variance. Exp. Brain Res., 158: 317–327.Google Scholar
MacKenzie, S. I. and Buxton, W. A. S. (1992). Extending Fitts' law to two-dimensional tasks. Proc. ACM CHI 1992 Conf. Human Factors in Computing Systems, pp. 219–226.
Mansouri, B., Allen, H. A. and Hess, R. F. (2005). Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia. Vision Res., 45: 2449–2460.Google Scholar
Mansouri, B., Hansen, B. C. and Hess, R. F. (2009). Disrupted retinotopic maps in amblyopia. Invest. Ophthalmol. Vis. Sci., 50: 3218–3225.Google Scholar
McKee, S. P., Levi, D. M. and Movshon, J. A. (2003). The pattern of visual deficits in amblyopia. J. Vis., 3: 380–405.Google Scholar
Melmoth, D. R., Finlay, A. L., Morgan, M. J. and Grant, S. (2009). Grasping deficits and adaptations in adults with stereo vision losses. Invest. Ophthalmol. Vis. Sci., 50: 3711–3720.Google Scholar
Melmoth, D. R. and Grant, S. (2006). Advantages of binocular vision for the control of reaching and grasping. Exp. Brain Res., 171: 371–388.Google Scholar
Membreno, J. H., Brown, M. M., Brown, G. C., Sharma, S. and Beauchamp, G. R. (2002). A cost-utility analysis of therapy for amblyopia. Ophthalmology, 109: 2265–2271.Google Scholar
Mennie, N., Hayhoe, M. and Sullivan, B. (2007). Look-ahead fixations: anticipatory eye movements in natural tasks. Exp. Brain Res., 179: 427–442.Google Scholar
Messier, J. and Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Exp. Brain Res., 125: 139–152.Google Scholar
Mirabella, G., Hay, S. and Wong, A. M. (2011). Deficits in perception of real-world scenes in patients with a history of amblyopia. Arch. Ophthalmol., 129: 176–183.Google Scholar
Movshon, J. A., Eggers, H. M., Gizzi, M. S., Hendrickson, A. E., Kiorpes, L. and Boothe, R. G. (1987). Effects of early unilateral blur on the macaque's visual system. III. Physiological observations. J. Neurosci., 7: 1340–1351.Google Scholar
Murata, A. (1999). Extending effective target width in Fitts' law to a two-dimensional pointing task. Int. J. Human-Computer Interact., 11: 137–152.Google Scholar
Newell, K. M. and Corcos, D. M. (Eds.). (1993). Variability and Motor Control. Champaign, IL: Human Kinetics Publishers.
Niechwiej-Szwedo, E., Goltz, H., Chandrakumar, M., Hirji, Z. A., Crawford, J. D. and Wong, A. M. (2011). Effects of anisometropic amblyopia on visuomotor behaviour: II. Visually guided reaching. Invest. Ophthalmol. Vis. Sci., 52: 795–803.Google Scholar
Niechwiej-Szwedo, E., Goltz, H. C., Chandrakumar, M., Hirji, Z. and Wong, A. M. (2011). Effects of anisometropic amblyopia on visuomotor behaviour: III. Temporal eye-hand coordination during reaching. Invest. Ophthalmol. Vis. Sci., 52(8): 5853–5861.Google Scholar
Niechwiej-Szwedo, E., Goltz, H. C., Chandrakumar, M., Hirji, Z. A. and Wong, A. M. (2010). Effects of anisometropic amblyopia on visuomotor behavior, I: saccadic eye movements. Invest. Ophthalmol. Vis. Sci., 51: 6348–6354.Google Scholar
O'Connor, A. R., Birch, E. E., and Anderson, S. and Draper, H. (2009). The functional significance of stereopsis. Invest. Ophthalmol. Vis. Sci., 51: 2019–2023.Google Scholar
Paulignan, Y., MacKenzie, C., Marteniuk, R. and Jeannerod, M. (1991). Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp. Brain Res., 83: 502–512.Google Scholar
,The Pediatric Eye Disease Investigator Group (PEDIG). (2003). A comparison of atropine and patching treatments for moderate amblyopia by patient age, cause of amblyopia, depth of amblyopia and other factors. Ophthalmology, 110: 1632–1637; discussion 1637–1638.Google Scholar
Prablanc, C., Echallier, J. F., Jeannerod, M. and Komilis, E. (1979). Optimal response of eye and hand motor systems in pointing at a visual target. II. Static and dynamic visual cues in the control of hand movement. Biol. Cybern., 35: 183–187.Google Scholar
Prablanc, C., Masse, D. and Echallier, J. F. (1978). Error-correcting mechanisms in large saccades. Vision Res., 18: 557–560.Google Scholar
Prablanc, C., Pelisson, D. and Goodale, M.A. (1986). Visual control of reaching movements without vision of the limb. I. Role of retinal feedback of target position in guiding the hand. Exp. Brain Res., 62: 293–302.Google Scholar
Proteau, L. and Isabelle, G. (2002). On the role of visual afferent information for the control of aiming movements toward targets of different sizes. J. Mot. Behav., 34: 367–384.Google Scholar
Proteau, L. and Masson, G. (1997). Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm. Q. J. Exp. Psychol.A, 50: 726–741.Google Scholar
Proteau, L., Roujoula, A. and Messier, J. (2009). Evidence for continuous processing of visual information in a manual video-aiming task. J. Mot. Behav., 41: 219–231.Google Scholar
Repka, M. X., Cotter, S. A., Beck, R. W., Kraker, R. T., Birch, E. E., Everett, D. F., Hartle, R. W., Holmes, J. M., Quinn, G. E., Sal, N. A., Schaiman, M. M., Stager, D. R. and Wallace, D. K. (2004). A randomized trial of atropine regimens for treatment of moderate amblyopia in children. Ophthalmology, 111: 2076–2085.Google Scholar
Repka, M. X., Kraker, R. T., Beck, R. W., Holmes, J. M., Cotter, S. A., Birch, E. E., Atsle, W. F., Chawler, D. L., Falius, J., Arnold, R. W., Tien, D. R. and Glaser, S. R. (2008). A randomized trial of atropine vs patching for treatment of moderate amblyopia: follow-up at age 10 years. Arch. Ophthalmol., 126: 1039–1044.Google Scholar
Robinson, D. A. (1964). The mechanics of human saccadic eye movement. J. Physiol., 174: 245–264.Google Scholar
Sabes, P. N. (2000). The planning and control of reaching movements. Curr. Opin. Neurobiol., 10: 740–746.Google Scholar
Sarlegna, F., Blouin, J., Bresciani, J. P., Bourdin, C., Vercher, J. L. and Gauthier, G. M. (2003). Target and hand position information in the online control of goal-directed arm movements. Exp. Brain Res., 151: 524–535.Google Scholar
Scheiman, M. M., Hertle, R. W., Beck, R. W., Edwards, A. R., Birch, E., Cotter, S. A., Grounch, E. R. Jr., Cruz, O. A., Davitt, B. V., Donahue, S., Holmes, S. M., Lyon, D. W., Replea, M. X., Sala, N. A., Silbert, D. I., Suh, D. W. and Tamkins, S. M. (2005). Randomized trial of treatment of amblyopia in children aged 7 to 17 years. Arch. Ophthalmol., 123: 437–447.Google Scholar
Schor, C. (1975). A directional impairment of eye movement control in strabismus amblyopia. Invest. Ophthalmol., 14: 692–697.Google Scholar
Sengpiel, F., Blakemore, C., Kind, P. C. and Harrad, R. (1994). Interocular suppression in the visual cortex of strabismic cats. J. Neurosci., 14: 6855–6871.Google Scholar
Servos, P. and Goodale, M. A. (1994). Binocular vision and the on-line control of human prehension. Exp. Brain Res., 98: 119–127.Google Scholar
Servos, P., Goodale, M. A. and Jakobson, L. S. (1992). The role of binocular vision in prehension: a kinematic analysis. Vision Res., 32: 1513–1521.Google Scholar
Shadmehr, R., Smith, M.A. and Krakauer, J.W. (2010). Error correction, sensory prediction and adaptation in motor control. Annu. Rev. Neurosci., 33: 89–108.Google Scholar
Simmers, A. J., Ledgeway, T. and Hess, R. F. (2005). The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia. Vision Res., 45: 449–460.Google Scholar
Simmers, A. J., Ledgeway, T., Hess, R. F. and McGraw, P. V. (2003). Deficits to global motion processing in human amblyopia. Vision Res., 43: 729–738.Google Scholar
Simmers, A. J., Ledgeway, T., Mansouri, B., Hutchinson, C. V. and Hess, R. F. (2006). The extent of the dorsal extra-striate deficit in amblyopia. Vision Res., 46: 2571–2580.Google Scholar
Sireteanu, R. and Fronius, M. (1990). Human amblyopia: structure of the visual field. Exp. Brain Res., 79: 603–614.Google Scholar
Smith, E. L. III, Chino, Y. M., Ni, J., Cheng, H., Crawford, M. L. and Harwerth, R. S. (1997). Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision. J. Neurophysiol., 78: 1353–1362.Google Scholar
Smyrnis, N., Evdokimidis, I., Constantinidis, T. S. and Kastrinakis, G. (2000). Speed-accuracy trade-off in the performance of pointing movements in different directions in two-dimensional space. Exp. Brain Res., 134: 21–31.Google Scholar
Snyder, L. H. (2000). Coordinate transformations for eye and arm movements in the brain. Curr. Opin. Neurobiol., 10: 747–754.Google Scholar
Swets, J. A., Green, D. M., Getty, D. J. and Swets, J. B. (1978). Signal detection and identification at successive stages of observation. Percept. Psychophys., 23: 275–289.Google Scholar
Troost, B. T., Weber, R. B. and Daroff, R. B. (1974). Hypometric saccades. Am. J. Ophthalmol., 78: 1002–1005.Google Scholar
van Beers, R. J., Baraduc, P. and Wolpert, D. M. (2002). Role of uncertainty in sensorimotor control. Philos. Trans. R. Soc. Lond. Biol. Sci., 357: 1137–1145.Google Scholar
van Beers, R. J., Sittig, A. C. and Denier van der Gon, J. J. (1998). The precision of proprioceptive position sense. Exp. Brain Res., 122: 367–377.Google Scholar
van de Graaf, E. S., van der Sterre, G. W., Polling, J. R., van Kempen, H., Simonsz, B. and Simonsz, H. J. (2004). Amblyopia and strabismus questionnaire: design and initial validation. Strabismus, 12: 181–193.Google Scholar
Vercher, J. L., Magenes, G., Prablanc, C. and Gauthier, G. M. (1994). Eye-head-hand coordination in pointing at visual targets: spatial and temporal analysis. Exp. Brain Res., 99: 507–523.Google Scholar
Vesia, M., Yan, X., Henriques, D. Y., Sergio, L. E. and Crawford, J. D. (2008). Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan. J. Neurophysiol., 100: 20052014.Google Scholar
Vindras, P., Desmurget, M. and Viviani, P. (2005). Error parsing in visuomotor pointing reveals independent processing of amplitude and direction. J. Neurophysiol., 94: 1212–1224.Google Scholar
Webber, A. L., Wood, J. M., Gole, G. A. and Brown, B. (2008). The effect of amblyopia on fine motor skills in children. Invest. Ophthalmol. Vis. Sci., 49: 594–603.Google Scholar
Wiesel, T. N. and Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol., 26: 1003–1017.Google Scholar
Wong, E. H., Levi, D. M. and McGraw, P. V. (2001). Is second-order spatial loss in amblyopia explained by the loss of first-order spatial input?Vision Res., 41: 2951–2960.Google Scholar
Woo, G. C. and Irving, E. L. (1991). The non-amblyopic eye of a unilateral amblyope: a unique entity. Clin. Exp. Optom. 74: 1–5.Google Scholar
Woodman, W., Young, M., Kelly, K., Simoens, J. and Yolton, R. L. (1990). Effects of monocular occlusion on neural and motor response times for two-dimensional stimuli. Optom. Vis. Sci., 67: 169–178.Google Scholar
Xu, P., Lu, Z. L., Qiu, Z. and Zhou, Y. (2006). Identify mechanisms of amblyopia in Gabor orientation identification with external noise. Vision Res., 46: 3748–3760.Google Scholar
Yinon, U., Jakobovitz, L. and Auerbach, E. (1974). The visual evoked response to stationary checkerboard patterns in children with strabismic amblyopia. Invest. Ophthalmol., 13: 293–296.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×