Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-08T02:34:37.664Z Has data issue: false hasContentIssue false

10 - Theory of Narrow Rings and Sharp Edges

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

P.-Y. Longaretti
Affiliation:
Université Grenoble Alpes Grenoble, FRANCE
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access
Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 225 - 275
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araki, S. 1991. The dynamics of particle disks. Ill —Dense and spinning particle disks. Icarus, 90(Mar.), 139-171.
Araki, S., and Tremaine, S. 1986. The dynamics of dense particle disks. Icarus, 65, 83-109.CrossRefGoogle Scholar
Borderies, N., and Longaretti, P. Y. 1987. Description and behavior of streamlines in planetary rings. Icarus, 72, 593-603.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1982. Sharp edges of planetary rings. Nature, 299, 209-211.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1983a. Perturbed particle disks. Icarus, 55, 124-132.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1983b. Precession of inclined rings. Astron. J., 88, 226-228.Google Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1983c. The dynamics of elliptical rings. Astron. J., 88, 1560-1568.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1983d. The variations in eccentricity and apse precession rate of a narrow ring perturbed by a close satellite. Icarus, 53, 84-89.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1984. Unsolved problems in planetary ring dynamics. Pages 713—734 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. University of Arizona Press.Google Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1985. A granular flow model for dense planetary rings. Icarus, 63, 406—420.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1986. Nonlinear density waves in planetary rings. Icarus, 68, 522—533.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1989. The formation of sharp edges in planetary rings by nearby satellites. Icarus, 80, 344-360.CrossRefGoogle Scholar
Borderies-Rappaport, N., and Longaretti, P. -Y. 1994. Test particle motion around an oblate planet. Icarus, 107, 129-141.CrossRefGoogle Scholar
Bridges, F. G., Hatzes, A., and Lin, D. N. C. 1984. Structure, stability and evolution of Saturn's rings. Nature, 309, 333-335.CrossRefGoogle Scholar
Chiang, E. I., and Goldreich, P. 2000. Apse alignment of narrow eccentric planetary rings. Astrophys. J., 540, 1084-1090.CrossRefGoogle Scholar
Colombo, G., Goldreich, P., and Harris, A. W. 1976. Spiral structure as an explanation for the asymmetric brightness of Saturn's A ring. Nature, 264, 344-345.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., and McClintock, W. E. 2007. Self-gravity wakes and radial structure of Saturn's Bring. Icarus, 190, 127-144.CrossRefGoogle Scholar
Cuzzi, J. N., and Scargle, J. D. 1985. Wavy edges suggest moonlet in Encke's gap. Astrophys. J., 292, 276-290.CrossRefGoogle Scholar
Daisaka, H., and Ida, S. 1999. Spatial structure and coherent motion in dense planetary rings induced by self-gravitational instability. Earth, Planets, and Space, 51, 1195-1213.CrossRefGoogle Scholar
Daisaka, H., Tanaka, H., and Ida, S. 2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus, 154, 296—312.CrossRefGoogle Scholar
de Pater, I., Gibbard, S. G., Chiang, E., et al. 2005. The dynamic nep-tunian ring arcs: evidence for a gradual disappearance of Liberte and resonant jump of Courage. Icarus, 174, 263-272.CrossRefGoogle Scholar
Dermott, S. F. 1984. Dynamics of narrow rings. Pages 589-637 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. University of Arizona Press.Google Scholar
Dermott, S. E., and Murray, C. D. 1980. Origin of the eccentricity gradient and the apse alignment of the epsilon ring of Uranus. Icarus, 43, 338-349.CrossRefGoogle Scholar
Dewar, R. L. 1972. A Lagrangian derivation of the Action-conservation theorem for density waves. Astrophys. J., 174, 301—307.CrossRefGoogle Scholar
Duncan, M., Quinn, T., and Tremaine, S. 1989. The long-term evolution of orbits in the solar system -A mapping approach. Icarus, 82, 402-418.CrossRefGoogle Scholar
Esposito, L. W., Brahic, A., Burns, J. A., and Marouf, E. A. 1991. Particle properties and processes in Uranus' rings. Pages 410-65 of: Bergstralh, J. T., Miner, E. D., and Matthews, M. S. (eds.), Uranus. University of Arizona Press.Google Scholar
French, R. G., Nicholson, P. D., Porco, C. C., and Marouf, E. A. 1991. Dynamics and structure of the Uranian rings. Pages 327-09 of: Bergstralh, J. T., Miner, E. D., and Matthews, M. S. (eds.), Uranus. University of Arizona Press.Google Scholar
Fridman, A. M., and Gorkavyi, N. N. 1999. Physics of Planetary Rings. Springer Verlag.CrossRefGoogle Scholar
Gammie, C. F. 2001. Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J., 553, 174—183.CrossRefGoogle Scholar
Goldreich, P., and Porco, C. C. 1987. Shepherding of the Uranian Rings. II. Dynamics. Astron. J., 93, 730-737.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1978a. The excitation and evolution of density waves. Astrophys. J., Ill, 850—858.Google Scholar
Goldreich, P., and Tremaine, S. D. 1978b. The formation of the Cassini division in Saturn's rings. Icarus, 34, 240-253.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. D. 1978c. The velocity dispersion in Saturn's rings. Icarus, 34, 227—239.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1979a. Precession of the epsilon ring of Uranus. Astron. J., 84, 1638-1641.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1979b. The excitation of density waves at the Lindblad and corotation resonances by an external potential. Astrophys. J., 233, 857-871.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1979c. Towards a theory for the Uranian rings. Nature, 211, 97-99.Google Scholar
Goldreich, P., and Tremaine, S. 1980. Disk-satellite interactions. Astrophys. J., 241, 425-441.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1981. The origin of the eccentricities of the rings of Uranus. Astrophys. J., 243, 1062—1075.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1982. The dynamics of planetary rings. Ann. Rev. Astron. Astrophys., 20, 249-283.CrossRefGoogle Scholar
Goldreich, P., Goodman, J., and Narayan, R. 1986a. The stability of accretion tori. I —Long-wavelength modes of slender tori. Month. Not. Roy. Astron. Soc, 221, 339-364.CrossRefGoogle Scholar
Goldreich, P., Tremaine, S., and Borderies, N. 1986b. Towards a theory for Neptune's arc rings. Astron. J., 92, 490-494.CrossRefGoogle Scholar
Goldreich, P., Rappaport, N., and Sicardy, B. 1995. Single sided shepherding. Icarus, 118, 414-417.CrossRefGoogle Scholar
Graps, A. L., Showalter, M. R., Lissauer, J. J., and Kary, D. M. 1995. Optical depths profiles and streamlines of the Uranian epsilon ring. Astron. /., 109, 2262-2273.Google Scholar
Haff, P. K. 1983. Grain flow as a fluid-mechanical phenomenon. J. Fluid Meek, 134, 401-430.Google Scholar
Hahn, J. M., Spitale, J. N., and Porco, C. C. 2009. Dynamics of the sharp edges of broad planetary rings. Astrophys. J., 699, 686-710.CrossRefGoogle Scholar
Hanninen, J., and Salo, H. 1992. Collisional simulations of satellite Lindblad resonances. Icarus, 97, 228—247.CrossRefGoogle Scholar
Hanninen, J., and Salo, H. 1994. Collisional simulations of satellite Lindblad resonances. 2: Formation of narrow ringlets. Icarus, 108, 325-346.CrossRefGoogle Scholar
Hanninen, J., and Salo, H. 1995. Formation of isolated narrow ringlets by a single satellite. Icarus, 111, 435-438.Google Scholar
Hedman, M. M., and Nicholson, P. D. 2016. The B-ring's surface mass density from hidden density waves: Less than meets the eye? ArXiv e-prints.
Hedman, M. M., Nicholson, P. D., Salo, H., et al. 2007. Self-gravity wake structures in Saturn's A ring revealed by Cassini VIMS. Astron. J., 133, 2624-2629.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Baines, K. H., et al. 2010. The architecture of the Cassini Division. Astron. J., 139, 228-251.CrossRefGoogle Scholar
Julian, W. H., and Toomre, A. 1966. Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J., 146, 810—830.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2006. The linear stability of dilute particulate rings. Icarus, 184, 498-516.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2008. Dense planetary rings and the viscous overstability. Icarus, 195, 725-751.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2009. The viscous overstability, nonlinear wavetrains, and finescale structure in dense planetary rings. Icarus, 202, 565-583.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2010. Hydrodynamical simulations of viscous overstability in Saturn's rings. Icarus, 210, 318-329.CrossRefGoogle Scholar
Lehmann, M., Schmidt, J., and Salo, H. 2016. A weakly nonlinear model for the damping of density waves in dense planetary rings. Astrophys. J., 829, 75.CrossRefGoogle Scholar
Lewis, M., Stewart, G., Leezer, J., and West, A. 2011. Negative diffusion in planetary rings with a nearby moon. Icarus, 213, 201-217.CrossRefGoogle Scholar
Lewis, M. C., and Stewart, G. R. 2005. Expectations for Cassini observations of ring material with nearby moons. Icarus, 178, 124-143.CrossRefGoogle Scholar
Lin, C. C., and Shu, F. H. 1968. Density wave theory of spiral struc-ture. Pages 236—329 of: Chretien, M., Deser, S., and Goldstein, J. (eds.), Astrophysics and General Relativity, vol. II. Gordon & Breach, New York.Google Scholar
Lin, D. N. C., and Papaloizou, J. 1979. Tidal torques on accretion discs in binary systems with extreme mass ratios. Month. Not. Roy. Astron. Soc, 186, 799-812.CrossRefGoogle Scholar
Lissauer, J. J. 1985. Shepherding model for Neptune's arc ring. Nature, 318, 544-545.CrossRefGoogle Scholar
Longaretti, P. -Y. 1989. Uranian ring dynamics -An analysis of multi-mode motions. Icarus, 82, 281—287.CrossRefGoogle Scholar
Longaretti, P. -Y. 1992. Planetary ring dynamics: from Boltzmann's equation to celestial mechanics. In: Benest, D., and Froeschle, C. (eds.), Interrelations Between Physics and Dynamics for Minor Bodies in the Solar System. Editions Frontieres. Available on arXiv: astro-ph/1606. 00759.Google Scholar
Longaretti, P. -Y, and Borderies, N. 1991. Streamline formalism and ring orbit determination. Icarus, 94, 165-170.CrossRefGoogle Scholar
Longaretti, P. -Y, and Rappaport, N. 1995. Viscous overstabilities in dense narrow planetary rings. Icarus, 116, 376-396.CrossRefGoogle Scholar
Lynden-Bell, D., and Kalnajs, A. J. 1972. On the generating mechanism of spiral structure. Month. Not. Roy. Astron. Soc, 157, 1—30.CrossRefGoogle Scholar
Meyer-Vernet, N., and Sicardy, B. 1987. On the physics of resonant disk-satellite interaction. Icarus, 69, 157-175.CrossRefGoogle Scholar
Michikoshi, S., Fujii, A., Kokubo, E., and Salo, H. 2015. Dynamics of self-gravity wakes in dense planetary rings. I. Pitch angle. Astrophys. J., 812, 151.CrossRefGoogle Scholar
Mosqueira, I. 1996. Local simulations of perturbed dense planetary rings. Icarus, 122, 128-152.CrossRefGoogle Scholar
Mosqueira, I., and Estrada, P. R. 2002. Apse alignment of the uranian rings. Icarus, 158, 545-556.CrossRefGoogle Scholar
Murray, C. D., and Dermott, S. F. 1999. Solar System Dynamics. Cambridge University Press.Google Scholar
Namouni, R., and Porco, C. 2002. The confinement of Neptune's ring arcs by the moon Galatea. Nature, 417, 45—47.CrossRefGoogle ScholarPubMed
Nicholson, P. D., and Hedman, M. M. 2010. Self-gravity wake parameters in Saturn's A and Brings. Icarus, 206, 410—423.CrossRefGoogle Scholar
Nicholson, P. D., French, R. G., Hedman, M. M., Marouf, E. A., and Colwell, J. E. 2014. Noncircular features in Saturn's rings I: The edge of the Bring. Icarus, 227, 152-175.CrossRefGoogle Scholar
Ogilvie, G. I., and Lubow, S. H. 2003. Saturation of the corotation resonance in a gaseous disk. Astrophys. J, 587, 398-406.CrossRefGoogle Scholar
Papaloizou, J. C. B., and Lin, D. N. C. 1988. On the pulsational over-stability in narrowly confined viscous rings. Astrophys. J., 331, 838-860.CrossRefGoogle Scholar
Papaloizou, J. C. B., and Melita, M. D. 2005. Structuring eccentric-narrow planetary rings. Icarus, 175, 435-451.CrossRefGoogle Scholar
Porco, C. C., and Goldreich, P. 1987. Shepherding of the Uranian rings. I -Kinematics. Astron. J., 93, 724-729.CrossRefGoogle Scholar
Rein, H., and Latter, H. N. 2013. Large-scale N-body simulations of the viscous overstability in Saturn's rings. Month. Not. Roy. Astron. Soc, 431, 145-158.CrossRefGoogle Scholar
Richardson, D. C. 1994. Tree code simulations of planetary rings. Month. Not. Roy. Astron. Soc, 269, 493-511.CrossRefGoogle Scholar
Robbins, S. J., Stewart, G. R., Lewis, M. C., Colwell, J. E., and Sremčević, M. 2010. Estimating the masses of Saturn's A and Brings from high-optical depth N-body simulations and stellar occultations. Icarus, 206, 431-445.CrossRefGoogle Scholar
Roy, A. E. 1988. Orbital Motion. Institute of Physics Publishing.Google Scholar
Sagdeev, R. Z., Usikov, D. A., and Zaslavsky, G. M. 1988. Nonlinear Physics. From the Pendulum to Turbulence and Chaos. Harwood Academic Publishers.Google Scholar
Salmon, J., Charnoz, S., Crida, A., and Brahic, A. 2010. Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209, 771-785.CrossRefGoogle Scholar
Salo, H. 1991. Numerical simulations of dense collisional systems. Icarus, 90, 254-270.CrossRefGoogle Scholar
Salo, H. 1992a. Gravitational wakes in Saturn's rings. Nature, 359, 619-621.CrossRefGoogle Scholar
Salo, H. 1992b. Numerical simulations of dense collisional systems. II —Extended distribution of particle sizes. Icarus, 96, 85—106.CrossRefGoogle Scholar
Salo, H. 1995. Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus, 117, 287-312.CrossRefGoogle Scholar
Salo, H., Schmidt, J., and Spahn, F. 2001. Viscous overstability in Saturn's Bring. I. Direct simulations and measurement of transport coefficients. Icarus, 153, 295-315.CrossRefGoogle Scholar
Schmidt, J., and Salo, H. 2003. Weakly nonlinear model for oscilla-tory instability in Saturn's dense rings. Phys. Rev. Lett., 90(6), 061102.CrossRefGoogle ScholarPubMed
Schmidt, J., Salo, H., Spahn, P., and Petzschmann, O. 2001. Viscous overstability in Saturn's B-ring. II. Hydrodynamic theory and comparison to simulations. Icarus, 153, 316-331.CrossRefGoogle Scholar
Schmit, U., and Tscharnuter, W. M. 1995. A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn's B-ring. Icarus, 115, 304—319.CrossRefGoogle Scholar
Schmit, U., and Tscharnuter, W. M. 1999. On the formation of the fine-scale structure in Saturn's Bring. Icarus, 138, 173-187.CrossRefGoogle Scholar
SeiB, M., Spahn, R., and Schmidt, J. 2010. Moonlet induced wakes in planetary rings: Analytical model including eccentric orbits of moon and ring particles. Icarus, 210, 298—317.Google Scholar
Sellwood, J. A., and Kahn, F. D. 1991. Spiral modes driven by narrow features in angular-momentum density. Month. Not. Roy. Astron. Soc, 250, 278-299.CrossRefGoogle Scholar
Shepelyansky, D. L., Pikovsky, A. S., Schmidt, J., and Spahn, F. 2009. Synchronization mechanism of sharp edges in rings of Saturn. Month. Not. Roy. Astron. Soc, 395, 1934-1940.CrossRefGoogle Scholar
Showalter, M. R., Cuzzi, J. N., Marouf, E. A., and Esposito, L. W. 1986. Satellite ‘wakes’ and the orbit of the Encke Gap moonlet. Icarus, 66, 297-323.CrossRefGoogle Scholar
Shu, F. H. 1970. On the density-wave theory of galactic spirals. II. The propagation of the density of wave action. Astrophys. J., 160, 99.CrossRefGoogle Scholar
Shu, F. H. 1984. Waves in planetary rings. Pages 513-561 of: Green-berg, R., and Brahic, A. (eds.), Planetary Rings. University of Arizona Press.Google Scholar
Shu, R. H., and Stewart, G. R. 1985. The collisional dynamics of particulate disks. Icarus, 62, 360-383.CrossRefGoogle Scholar
Shu, F. H., Yuan, C., and Lissauer, J. J. 1985a. Nonlinear spiral density waves —An inviscid theory. Astrophys. J., 291, 356—376.CrossRefGoogle Scholar
Shu, F. H., Dones, L., Lissauer, J. J., Yuan, C., and Cuzzi, J. N. 1985b. Nonlinear spiral density waves -Viscous damping. Astrophys. J., 299, 542-573.CrossRefGoogle Scholar
Shukhman, I. G. 1984. Collisional dynamics of particles in Saturn's rings. Sov. Ast., 28, 574-585.Google Scholar
Spahn, R., Schmidt, J., Petzschmann, O., and Salo, H. 2000. Note: Stability analysis of a Keplerian disk of granular grains: Influence of thermal diffusion. Icarus, 145, 657-660. Theory of Narrow Rings and Sharp Edges 27.CrossRefGoogle Scholar
Spitale, J. N., and Porco, C. C. 2010. Detection of free unstable modes and massive bodies in Saturn's outer Bring. Astron. J., 140, 1747-1757.CrossRefGoogle Scholar
Stewart, G. R. 1991. Nonlinear satellite wakes in planetary rings. I —Phase-space kinematics. Icarus, 94, 436-450.CrossRefGoogle Scholar
Takeda, T., and Ida, S. 2001. Angular momentum transfer in a protolu-nar disk. Astrophys. J., 560, 514-533.CrossRefGoogle Scholar
Tanaka, H., Ohtsuki, K., and Daisaka, H. 2003. A new formulation of the viscosity in planetary rings. Icarus, 161, 144—156.CrossRefGoogle Scholar
Toomre, A. 1964. On the gravitational stability of a disk of stars. Astrophys. J., 139, 1217-1238.CrossRefGoogle Scholar
Toomre, A. 1969. Group Velocity of spiral waves in galactic disks. Astrophys. J., 158, 899-913.CrossRefGoogle Scholar
Tyler, G. L., Eshleman, V. R., Hinson, D. P., et al. 1986. Voyager 2 radio science observations of the Uranian system atmosphere, rings, and satellites. Science, 233, 79-84.CrossRefGoogle ScholarPubMed
Wisdom, J. 1980. The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. /., 85, 1122-1133.Google Scholar
Wisdom, J., and Tremaine, S. 1988. Local simulations of planetary rings. Astron. J., 95, 925-940.CrossRefGoogle Scholar
Yasui, Y., Ohtsuki, K., and Daisaka, H. 2012. Viscosity in plane-tary rings with spinning self-gravitating particles. Astron. J., 143, 110.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×