Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T10:18:04.146Z Has data issue: false hasContentIssue false

20 - Planetary Rings and Other Astrophysical Disks

from IV - Concluding Material

Published online by Cambridge University Press:  26 February 2018

H. N. Latter
Affiliation:
Cambridge University Cambridge, ENGLAND
G. I. Ogilvie
Affiliation:
Cambridge University Cambridge, ENGLAND
H. Rein
Affiliation:
University of Toronto Toronto, Ontario, CANADA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

This chapter explores the physics shared by planetary rings and the various disks that populate the Universe. It begins with an observational overview, ranging from protoplanetary disks to spiral galaxies, and then compares and contrasts these astrophysical disks with the rings of the solar system. Emphasis is placed on fundamental physics and dynamics, and how research into the two classes of object connects. Topics covered include disk formation, accretion, collisional processes, waves, instabilities, and satellite–disk interactions.

INTRODUCTION

Disks are ubiquitous in astrophysics and participate in some of its most important processes. Most, but not all, feed a central mass: by facilitating the transfer of angular momentum, they permit the accretion of material that would otherwise remain in orbit (Lynden-Bell and Pringle, 1974). As a consequence, disks are essential to star, planet, and satellite formation (McKee and Ostriker, 2007; Williams and Cieza, 2011; Papaloizou and Terquem, 2006; Peale, 1999). They also regulate the growth of supermassive black holes and thus indirectly influence galactic structure and the intracluster medium (Volonteri, 2010; Fabian, 2012). Although astrophysical disks can vary by ten orders of magnitude in size and differ hugely in composition, all share the same basic dynamics and many physical phenomena. This review explores these areas of overlap.

The prevalence of flattened astrophysical systems is a result of dissipation and rotation (Goldreich and Tremaine, 1982). A cloud of gas or debris in orbit around a central mass conserves its total angular momentum but not its energy, as there are numerous processes that may cool the cloud (inelastic physical collisions, Bremsstrahlung, molecular line emission, etc.). As a result, particles’ random velocities are steadily depleted – where “random velocity” is understood to be the component surplus to the circular orbit fixed by the angular momentum. The system contracts into a flat circular disk, the lowest energy state accessible. The contraction ends, and an equilibrium balance is achieved, once the cooling is met by heating (supplied by external irradiation or an internal viscous stress).

Let us define a cylindrical coordinate system with its origin at the central mass and the vertical pointing in the direction of the total angular momentum vector. We describe systems as cold when the pressure gradient is weak and the final equilibrium very thin: radially the dominant force balance is between the centrifugal force and gravity, while vertically it is between pressure and gravity.

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 549 - 576
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116(6), 061102.Google ScholarPubMed
Abramowicz, M. A., and Fragile, P. C. 2013. Foundations of black hole accretion disk theory. Living Reviews in Relativity, 16.CrossRefGoogle ScholarPubMed
Abramowicz, M. A., Czerny, B., Lasota, J. P., and Szuszkiewicz, E. 1988. Slim accretion disks. ApJ, 332, 646–658.CrossRefGoogle Scholar
Albers, N., and Spahn, F. 2006a. The influence of particle adhesion on the stability of agglomerates in Saturn's rings. Icarus, 181, 292–301.CrossRefGoogle Scholar
Albers, N., and Spahn, F. 2006b. The influence of particle adhesion on the stability of agglomerates in Saturn's rings. Icarus, 181, 292–301.CrossRefGoogle Scholar
Alexander, R. D., Clarke, C. J., and Pringle, J. E. 2006. Photoevaporation of protoplanetary discs –II. Evolutionary models and observable properties. MNRAS, 369, 229–239.Google Scholar
Alma, Partnership., Brogan, C. L., Pérez, L. M., et al. 2015. The 2014 ALMA long baseline campaign: First results from high angular resolution observations toward the HL Tau region. ApJL, 808, L3.Google Scholar
Andrews, S. M., Wilner, D. J., Espaillat, C., et al. 2011. Resolved images of large cavities in protoplanetary transition disks. ApJ, 732, 42.CrossRefGoogle Scholar
Antonucci, R. 1993. Unified models for active galactic nuclei and quasars. ARAA, 31, 473–521.CrossRefGoogle Scholar
Araki, S., and Tremaine, S. 1986. The dynamics of dense particle disks. Icarus, 65, 83–109.CrossRefGoogle Scholar
Armitage, P. J. 2011. Dynamics of protoplanetary disks. ARAA, 49, 195–236.CrossRefGoogle Scholar
Armitage, P. J., Livio, M., and Pringle, J. E. 2001. Episodic accretion in magnetically layered protoplanetary discs. MNRAS, 324, 705–711.CrossRefGoogle Scholar
Attree, N. O., Murray, C. D., Cooper, N. J., and Williams, G. A. 2012. Detection of low-velocity collisions in Saturn's F ring. ApJL, 755, L27.CrossRefGoogle Scholar
Attree, N. O., Murray, C. D., Williams, G. A., and Cooper, N. J. 2014. A survey of low-velocity collisional features in Saturn's F ring. Icarus, 227, 56–66.CrossRefGoogle Scholar
Audard, M., Ábrahám, P., Dunham, M. M., et al. 2014. Episodic accretion in young stars. Protostars and Planets VI, 387–410.
Aumann, H. H., Beichman, C. A., Gillett, F. C., et al. 1984. Discovery of a shell around Alpha Lyrae. ApJL, 278, L23–L27.CrossRefGoogle Scholar
Baade, W., and Minkowski, R. 1954. Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A. ApJ, 119, 206.CrossRefGoogle Scholar
Backman, D. E., and Paresce, F. 1993. Main-sequence stars with circumstellar solid material –The VEGA phenomenon. Pages 1253–1304 of: Levy E, H., and Lunine, J. I. (eds.), Protostars and Planets III.
Balbus, S. A., and Hawley, J. F. 1991. A powerful local shear instability in weakly magnetized disks. I –Linear analysis. II –Nonlinear evolution. ApJ, 376, 214–233.CrossRefGoogle Scholar
Balbus, S. A., and Hawley, J. F. 1998. Instability, turbulence, and enhanced transport in accretion disks. Reviews of Modern Physics, 70, 1–53.CrossRefGoogle Scholar
Balbus, S. A., and Papaloizou, J. C. B. 1999. On the dynamical foundations of α disks. ApJ, 521, 650–658.Google Scholar
Barbara, J. M., and Esposito, L. W. 2002. Moonlet collisions and the effects of tidally modified accretion in Saturn's F ring. Icarus, 160, 161–171.CrossRefGoogle Scholar
Barge, P., and Sommeria, J. 1995. Did planet formation begin inside persistent gaseous vortices? A&A, 295, L1–L4.Google Scholar
Barker A, J., and Latter, H. N. 2015. On the vertical-shear instability in astrophysical discs. MNRAS, 450, 21–37.CrossRefGoogle Scholar
Baruteau, C., Crida, A., Paardekooper, S. -J., et al. 2014. Planet–disk interactions and early evolution of planetary systems. Protostars and Planets VI, 667–689.
Becker, T. M., Colwell, J. E., Esposito, L. W., and Bratcher, A. D. 2016. Characterizing the particle size distribution of Saturn's A ring with Cassini UVIS occultation data. Icarus, 279, 20–35.CrossRefGoogle Scholar
Bell, K. R., and Lin, D. N. C. 1994. Using FU Orionis outbursts to constrain self-regulated protostellar disk models. ApJ, 427, 987–1004.CrossRefGoogle Scholar
Belloni, T. M. 2010. States and transitions in black hole binaries. Page 53 of: Belloni, T. (ed.), Lecture Notes in Physics, Berlin, Springer Verlag, vol. 794.Google Scholar
Benisty, M., Juhasz, A., Boccaletti, A., et al. 2015. Asymmetric features in the protoplanetary disk MWC 758. A&A, 578, L6.Google Scholar
Benítez-Llambay, P., Masset, F., Koenigsberger, G., and Szulágyi, J. 2015. Planet heating prevents inward migration of planetary cores. Nature, 520, 63–65.CrossRefGoogle ScholarPubMed
Beurle, K., Murray, C. D., Williams G, A., et al. 2010. Direct evidence for gravitational instability and moonlet formation in Saturn's rings. ApJL, 718, L176–L180.CrossRefGoogle Scholar
Binney, J., and Merrifield, M. 1998. Galactic Astronomy. Princeton University Press.Google Scholar
Binney, J., and Tremaine, S. 2008. Galactic Dynamics, Second Edition. Princeton University Press.Google Scholar
Biretta, J. A., Sparks, W. B., and Macchetto, F. 1999. Hubble Space Telescope observations of superluminal motion in the M87 Jet. ApJ, 520, 621–626.CrossRefGoogle Scholar
Blaes, O. M., and Balbus, S. A. 1994. Local shear instabilities in weakly ionized, weakly magnetized disks. ApJ, 421, 163–177.CrossRefGoogle Scholar
Blandford, R. D., and Payne, D. G. 1982. Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS, 199, 883–903.CrossRefGoogle Scholar
Bloom, J. S., Giannios, D., Metzger, B. D., et al. 2011. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science, 333, 203.CrossRefGoogle ScholarPubMed
Blum, J., andWurm, G. 2008. The growth mechanisms of macroscopic bodies in protoplanetary disks. ARAA, 46, 21–56.CrossRefGoogle Scholar
Blumenthal, G. R., Lin, D. N. C., and Yang, L. T. 1984. On the overstability of axisymmetric oscillations in thin accretion disks. ApJ, 287, 774–784.CrossRefGoogle Scholar
Bodrova, A., Schmidt, J., Spahn, F., and Brilliantov, N. 2012. Adhesion and collisional release of particles in dense planetary rings. Icarus, 218, 60–68.CrossRefGoogle Scholar
Bonsor, A., and Wyatt, M. 2010. Post-main-sequence evolution of A star debris discs. MNRAS, 409, 1631–1646.CrossRefGoogle Scholar
Bonsor, A., Mustill, A. J., and Wyatt, M. C. 2011. Dynamical effects of stellar mass-loss on a Kuiper-like belt. MNRAS, 414, 930–939.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1982. Sharp edges of planetary rings. Nature, 299, 209–211.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1983. The dynamics of elliptical rings. AJ, 88, 1560–1568.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1984. Excitation of inclinations in ring–satellite systems. ApJ, 284, 429–434.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1985. A granular flow model for dense planetary rings. Icarus, 63, 406–420.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1989. The formation of sharp edges in planetary rings by nearby satellites. Icarus, 80, 344–360.CrossRefGoogle Scholar
Boss, A. P. 1998. Evolution of the solar nebula. IV. Giant gaseous protoplanet formation. ApJ, 503, 923–937.CrossRefGoogle Scholar
Boss, A. P., and Graham, J. A. 1993. Clumpy disk accretion and chondrule formation. Icarus, 106, 168.CrossRefGoogle Scholar
Braginskii S, I. 1965. Transport processes in a plasma. Reviews of Plasma Physics, 1, 205.Google Scholar
Brauer, F., Dullemond, C. P., and Henning, T. 2008. Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. A&A, 480, 859–877.Google Scholar
Bridges, F. G., Hatzes, A., and Lin, D. N. C. 1984. Structure, stability and evolution of Saturn's rings. Nature, 309, 333–335.CrossRefGoogle Scholar
Brilliantov, N., Krapivsky, P. L., Bodrova, A., et al. 2015. Size distribution of particles in Saturn's rings from aggregation and fragmentation. Proceedings of the National Academy of Science, 112, 9536–9541.CrossRefGoogle ScholarPubMed
Broadfoot, A. L., Herbert, F., Holberg, J. B., et al. 1986. Ultraviolet spectrometer observations of Uranus. Science, 233, 74–79.CrossRefGoogle ScholarPubMed
Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the solar system. Icarus, 40, 1–48.CrossRefGoogle Scholar
Burns, J. A., Showalter, M. R., Hamilton, D. P., et al. 1999. The formation of Jupiter's faint rings. Science, 284, 1146.CrossRefGoogle ScholarPubMed
Burrows, D. N., Kennea, J. A., Ghisellini, G., et al. 2011. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature, 476, 421–424.CrossRefGoogle ScholarPubMed
Cameron, A. G. W. 1978. Physics of the primitive solar accretion disk. Moon and Planets, 18, 5–40.CrossRefGoogle Scholar
Camichel, H. 1958. Mesures photométriques de Saturne et de son anneau. Annales d'Astrophysique, 21, 231.Google Scholar
Cannizzo, J. K., and Mattei, J. A. 1998. A study of the outbursts in SS Cygni. ApJ, 505, 344–351.CrossRefGoogle Scholar
Canup, R. M. 2010. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943–946.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1969. Ellipsoidal Figures of Equilibrium. Yale University Press.Google Scholar
Charles, P. A., and Coe, M. J. 2006. Optical, ultraviolet and infrared observations of X-ray binaries, pp. 215–265 of: Lewin, W., and van der Klis, M. (eds.), Compact Stellar X-Ray Sources. Cambridge University Press.Google Scholar
Charnoz, S., Morbidelli, A., Dones, L., and Salmon, J. 2009. Did Saturn's rings form during the Late Heavy Bombardment? Icarus, 199, 413–428.CrossRefGoogle Scholar
Clarke, C. J., and Pringle, J. E. 1993. Accretion disc response to a stellar fly-by. MNRAS, 261, 190–202.CrossRefGoogle Scholar
Colombo, G., Goldreich, P., and Harris, A. W. 1976. Spiral structure as an explanation for the asymmetric brightness of Saturn's A ring. Nature, 264, 344.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., and McClintock, W. E. 2007. Self-gravity wakes and radial structure of Saturn's Bring. Icarus, 190, 127–144.CrossRefGoogle Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009. The Structure of Saturn's Rings, page 375. Springer.Google Scholar
Cuzzi, J. N., and Burns, J. A. 1988. Charged particle depletion surrounding Saturn's F ring –Evidence for a moonlet belt? Icarus, 74, 284–324.CrossRefGoogle Scholar
Daisaka, H., Tanaka, H., and Ida, S. 2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus, 154, 296–312.CrossRefGoogle Scholar
Debes, J. H., and Sigurdsson, S. 2002. Are there unstable planetary systems around white dwarfs? ApJ, 572, 556–565.CrossRefGoogle Scholar
Debes, J. H., Walsh, K. J., and Stark, C. 2012. The link between planetary systems, dusty white dwarfs, and metal-polluted white dwarfs. ApJ, 747, 148.CrossRefGoogle Scholar
Dohnanyi, J. S. 1969. Collisional model of asteroids and their debris. JGR, 74, 2531–2554.CrossRefGoogle Scholar
Dominik, C., and Decin, G. 2003. Age dependence of the Vega phenomenon: Theory. ApJ, 598, 626–635.CrossRefGoogle Scholar
Done, C., Wardzínski, G., and Gierlínski, M. 2004. GRS 1915+105: the brightest Galactic black hole. MNRAS, 349, 393–403.CrossRefGoogle Scholar
Done, C., Gierlínski, M., and Kubota, A. 2007. Modelling the behaviour of accretion flows in X-ray binaries. Everything you always wanted to know about accretion but were afraid to ask. AARv, 15, 1–66.Google Scholar
Dones, L. 1991. A recent cometary origin for Saturn's rings? Icarus, 92, 194–203.CrossRefGoogle Scholar
Dong, R., Zhu, Z., Rafikov, R. R., and Stone, J. M. 2015. Observational signatures of planets in protoplanetary disks: Spiral arms observed in scattered light imaging can be induced by planets. ApJL, 809, L5.Google Scholar
Dong, R., Zhu, Z., Fung, J., et al. 2016. AnMdwarf companion and its induced spiral arms in the HD 100453 protoplanetary disk. ApJL, 816, L12.Google Scholar
Donley, J. L., Brandt, W. N., Eracleous, M., and Boller, T. 2002. Largeamplitude X-ray outbursts from galactic nuclei: A systematic survey using ROSAT archival data. AJ, 124, 1308–1321.CrossRefGoogle Scholar
Draine, B. T. 2011. Physics of the Interstellar and Intergalactic Medium. Princeton University Press.Google Scholar
Dullemond, C. P., and Dominik, C. 2005. Dust coagulation in protoplanetary disks: A rapid depletion of small grains. A&A, 434, 971–986.Google Scholar
Durisen, R. H. 1984. Transport effects due to particle erosion mechanisms. Pages 416–446 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Durisen, R. H. 1995. An instability in planetary rings due to ballistic transport. Icarus, 115, 66–85.CrossRefGoogle Scholar
Durisen, R. H., Boss, A. P., Mayer, L., et al. 2007. Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. Protostars and Planets V, 607–622.
Eggen, O. J., Lynden-Bell, D., and Sandage, A. R. 1962. Evidence from the motions of old stars that the Galaxy collapsed. ApJ, 136, 748.CrossRefGoogle Scholar
Eiroa, C., Marshall, J. P., Mora, A., et al. 2013. Dust around Nearby Stars. The survey observational results. A&A, 555, A11.Google Scholar
Esposito, L. W., Albers, N., Meinke B, K., et al. 2012. A predator-prey model for moon-triggered clumping in Saturn's rings. Icarus, 217, 103–114.CrossRefGoogle Scholar
Estrada, P. R., and Cuzzi, J. N. 1996. Voyager observations of the color of Saturn's rings. Icarus, 122, 251–272.CrossRefGoogle Scholar
Evans, N. J., Dunham, M. M., Jørgensen, J. K., et al. 2009. The spitzer c2d legacy results: Star-formation rates and efficiencies; evolution and lifetimes. ApJS, 181, 321–350.CrossRefGoogle Scholar
Fabian, A. C. 2012. Observational evidence of active galactic nuclei feedback. ARAA, 50, 455–489.CrossRefGoogle Scholar
Fan, X., Carilli, C. L., and Keating, B. 2006. Observational constraints on cosmic reionization. ARAA, 44, 415–462.CrossRefGoogle Scholar
Fanaroff, B. L., and Riley, J. M. 1974. The morphology of extragalactic radio sources of high and low luminosity. MNRAS, 167, 31P–36P.CrossRefGoogle Scholar
Farihi, J., Jura, M., and Zuckerman, B. 2009. Infrared signatures of disrupted minor planets at white dwarfs. ApJ, 694, 805–819.CrossRefGoogle Scholar
Farinella, P., and Davis, D. R. 1996. Short-period comets: Primordial bodies or collisional fragments? Science, 273, 938–941.CrossRefGoogle ScholarPubMed
Faulkner, J., Lin, D. N. C., and Papaloizou, J. 1983. On the evolution of accretion disc flow in cataclysmic variables. I –The prospect of a limit cycle in dwarf nova systems. MNRAS, 205, 359–375.CrossRefGoogle Scholar
Ferrarese, L., and Ford, H. 2005. Supermassive black holes in galactic nuclei: Past, present and future research. SSRv, 116, 523–624.Google Scholar
Field, G. B. 1965. Thermal instability. ApJ, 142, 531.CrossRefGoogle Scholar
French R, G., and Nicholson, P. D. 2000. Saturn's rings II. Particle sizes inferred from stellar occultation data. Icarus, 145, 502–523.CrossRefGoogle Scholar
Fuller, J. 2014. Saturn ring seismology: Evidence for stable stratification in the deep interior of Saturn. Icarus, 242, 283–296.CrossRefGoogle Scholar
Gałan, C., Mikołajewski, M., Tomov, T., et al. 2012. International observational campaigns of the last two eclipses in EE Cephei: 2003 and 2008/9. A&A, 544, A53.Google Scholar
Gallagher, J. S., and Starrfield, S. 1978. Theory and observations of classical novae. ARAA, 16, 171–214.CrossRefGoogle Scholar
Gammie, C. F. 1996. Layered accretion in T Tauri disks. ApJ, 457, 355.CrossRefGoogle Scholar
Gammie, C. F. 2001. Nonlinear outcome of gravitational instability in cooling, gaseous disks. ApJ, 553, 174–183.CrossRefGoogle Scholar
Gänsicke, B. T., Marsh, T. R., Southworth, J., and Rebassa-Mansergas, A. 2006. A gaseous metal disk around a white dwarf. Science, 314, 1908.CrossRefGoogle ScholarPubMed
Gänsicke, B. T., Koester, D., Farihi, J., et al. 2012. The chemical diversity of exo-terrestrial planetary debris around white dwarfs. MNRAS, 424, 333–347.CrossRefGoogle Scholar
Garaud, P., Meru, F., Galvagni, M., and Olczak, C. 2013. From dust to planetesimals: An improved model for collisional growth in protoplanetary disks. ApJ, 764, 146.CrossRefGoogle Scholar
Geretshauser, R. J., Speith, R., Güttler, C., Krause, M., and Blum, J. 2010. Numerical simulations of highly porous dust aggregates in the low-velocity collision regime. Implementation and calibration of a smooth particle hydrodynamics code. A&A, 513, A58.Google Scholar
Giacconi, R., Gursky, H., Paolini, F. R., and Rossi, B. B. 1962. Evidence for x rays from sources outside the solar system. Physical Review Letters, 9, 439–443.CrossRefGoogle Scholar
Gierlínski, M., and Done, C. 2004. Black hole accretion discs: reality confronts theory. MNRAS, 347, 885–894.CrossRefGoogle Scholar
Goertz, C. K., and Morfill, G. 1988. A new instability of Saturn's ring. Icarus, 74, 325–330.CrossRefGoogle Scholar
Goldreich, P., and Lynden-Bell, D. 1965. II. Spiral arms as sheared gravitational instabilities. MNRAS, 130, 125.CrossRefGoogle Scholar
Goldreich, P., and Porco, C. C. 1987. Shepherding of the Uranian rings. II. Dynamics. AJ, 93, 730.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1978a. The excitation and evolution of density waves. ApJ, 222, 850–858.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. D. 1978b. The velocity dispersion in Saturn's rings. Icarus, 34, 227–239.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1980. Disk–satellite interactions. ApJ, 241, 425–441.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1981. The origin of the eccentricities of the rings of Uranus. ApJ, 243, 1062–1075.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1982. The dynamics of planetary rings. ARAA, 20, 249–283.CrossRefGoogle Scholar
Gor'kavyj, N. N., and Fridman, A. M. 1994. Physics of Planetary Rings. Celestial Mechanics of Continuous Medium. Moscow: Nauka.Google Scholar
Graham, J. R., Matthews, K., Neugebauer, G., and Soifer, B. T. 1990. The infrared excess of G29-38 –A brown dwarf or dust? ApJ, 357, 216–223.CrossRefGoogle Scholar
Greenberg, R., Hartmann, W. K., Chapman, C. R., and Wacker, J. F. 1978. Planetesimals to planets –Numerical simulation of collisional evolution. Icarus, 35, 1–26.CrossRefGoogle Scholar
Greenstein, J. L., and Schmidt, M. 1964. The quasi-stellar radio sources 3c 48 and 3c 273. ApJ, 140, 1.CrossRefGoogle Scholar
Guimarães, A. H. F., Albers, N., Spahn, F., et al. 2012. Aggregates in the strength and gravity regime: Particles sizes in Saturn's rings. Icarus, 220, 660–678.CrossRefGoogle Scholar
Gursky, H., Giacconi, R., Gorenstein, P., et al. 1966. A measurement of the location of the X-ray source SCO X-1. ApJ, 146, 310–316.CrossRefGoogle Scholar
Harris, A. W. 1984. The origin and evolution of planetary rings. Pages 641–659 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Hartman, R. C., Bertsch, D. L., Bloom, S. D., et al. 1999. The third EGRET catalog of high-energy gamma-ray sources. ApJS, 123, 79–202.CrossRefGoogle Scholar
Hartmann, L., and Kenyon, S. J. 1996. The FU Orionis phenomenon. ARAA, 34, 207–240.CrossRefGoogle Scholar
Hatzes A, P., Bridges, F. G., and Lin, D. N. C. 1988. Collisional properties of ice spheres at low impact velocities. MNRAS, 231, 1091–1115.CrossRefGoogle Scholar
Hatzes, A. P., Bridges, F., Lin, D. N. C., and Sachtjen, S. 1991. Coagulation of particles in Saturn's rings –Measurements of the cohesive force of water frost. Icarus, 89, 113–121.CrossRefGoogle Scholar
Hawley, J. F., Gammie, C. F., and Balbus, S. A. 1995. Local three-dimensional magnetohydrodynamic simulations of accretion disks. ApJ, 440, 742.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2013. Kronoseismology: Using density waves in Saturn's C ring to probe the planet's interior. AJ, 146, 12.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Showalter, M. R., et al. 2007. Saturn's dynamic D ring. Icarus, 188, 89–107.CrossRefGoogle Scholar
Hedman, M. M., Murray, C. D., Cooper, N. J., et al. 2009. Three tenuous rings/arcs for three tiny moons. Icarus, 199, 378–386.CrossRefGoogle Scholar
Hedman, M. M., Cooper, N. J., Murray, C. D., et al. 2010. Aegaeon (Saturn LIII), a G-ring object. Icarus, 207, 433–447.CrossRefGoogle Scholar
Hedman, M. M., Burns, J. A., Evans, M. W., Tiscareno, M. S., and Porco, C. C. 2011. Saturn's curiously corrugated C ring. Science, 332, 708.CrossRefGoogle ScholarPubMed
Hedman, M. M., Nicholson, P. D., and Salo, H. 2014. Exploring overstabilities in Saturn's A ring using two stellar occultations. AJ, 148, 15.CrossRefGoogle Scholar
Hellier, C. 2001. Cataclysmic Variable Stars. SpringerGoogle Scholar
Herbig, G. H. 1977. Eruptive phenomena in early stellar evolution. ApJ, 217, 693–715.CrossRefGoogle Scholar
Herbig, G. H. 1989. FU Orionis eruptions. Pages 233–246 of: Reipurth, B. (ed.), European Southern Observatory Conference and Workshop Proceedings. European Southern Observatory Conference and Workshop Proceedings, vol. 33.Google Scholar
Hills, J. G. 1975. Possible power source of Seyfert galaxies and QSOs. Nature, 254, 295–298.CrossRefGoogle Scholar
Hirose, S., Blaes, O., and Krolik, J. H. 2009. Turbulent stresses in local simulations of radiation-dominated accretion disks, and the possibility of the Lightman–Eardley instability. ApJ, 704, 781–788.CrossRefGoogle Scholar
Hoard, D. W., Howell, S. B., and Stencel, R. E. 2010. Taming the invisible monster: System parameter constraints for epsilon Aurigae from the far-ultraviolet to the mid-infrared. ApJ, 714, 549–560.CrossRefGoogle Scholar
Holberg, J. B., Barstow, M. A., and Green, E. M. 1997. The Discovery of Mg II ƛ4481 in the white dwarf EG 102: Evidence for ongoing accretion. ApJL, 474, L127–L130.Google Scholar
Horányi, M., Hartquist, T. W., Havnes, O., Mendis, D. A., and Morfill, G. E. 2004. Dusty plasma effects in Saturn's magnetosphere. Reviews of Geophysics, 42, 4002.CrossRefGoogle Scholar
Horányi, M., Burns, J. A., Hedman, M. M., Jones, G. H., and Kempf, S. 2009. Diffuse Rings, p. 511.CrossRef
Hubble, E. P. 1925. Cepheids in spiral nebulae. Popular Astronomy, 33, 252–255.Google Scholar
Hubble, E. P. 1936. Realm of the Nebulae. Yale University Press.
Hyodo, R., and Ohtsuki, K. 2014. Collisional disruption of gravitational aggregates in the tidal environment. ApJ, 787, 56.CrossRefGoogle Scholar
Hyodo, R., and Ohtsuki, K. 2015. Saturn's F ring and shepherd satellites a natural outcome of satellite system formation. Nature Geoscience, 8(9), 686–689.CrossRefGoogle Scholar
Jeans, J. H. 1917. Some problems of astronomy (XXIV. The evolution of rotating masses). The Observatory, 40, 196–203.Google Scholar
Jewitt, D. C., and Luu, J. X. 2000. Physical nature of the Kuiper Belt. Protostars and Planets IV, 1201.
Jiang, Y. -F., Stone, J. M., and Davis, S. W. 2013. On the thermal stability of radiation-dominated accretion disks. ApJ, 778, 65.CrossRefGoogle Scholar
Johansen, A., Youdin, A., and Klahr, H. 2009. Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. ApJ, 697, 1269–1289.CrossRefGoogle Scholar
Johnson, B. M., and Gammie, C. F. 2003. Nonlinear outcome of gravitational instability in disks with realistic cooling. ApJ, 597, 131–141.CrossRefGoogle Scholar
Joos, M., Hennebelle, P., and Ciardi, A. 2012. Protostellar disk formation and transport of angular momentum during magnetized core collapse. A&A, 543, A128.Google Scholar
Jura, M. 2003. A tidally disrupted asteroid around the white dwarf G29-38. ApJL, 584, L91–L94.CrossRefGoogle Scholar
Jura, M. 2008. Pollution of single white dwarfs by accretion of many small asteroids. AJ, 135, 1785–1792.CrossRefGoogle Scholar
Karjalainen, R. 2007. Aggregate impacts in Saturn's rings. Icarus, 189, 523–537.CrossRefGoogle Scholar
Karjalainen, R., and Salo, H. 2004. Gravitational accretion of particles in Saturn's rings. Icarus, 172, 328–348.CrossRefGoogle Scholar
Kato, S. 1978. Pulsational instability of accretion disks to axially symmetric oscillations. MNRAS, 185, 629–642.CrossRefGoogle Scholar
Kato, S., and Yoshizawa, A. 1993. A model of hydromagnetic turbulence in accretion disks. PASJ, 45, 103–112.Google Scholar
Kato, S., and Yoshizawa, A. 1995. A model of hydromagnetic turbulence in accretion disks. II. PASJ, 47, 629–637.Google Scholar
Katz, J. I. 1973. Thirty-five-day periodicity in Her X-1. Nature Physical Science, 246, 87–89.CrossRefGoogle Scholar
Kenyon, S. J., and Bromley, B. C. 2004a. Collisional cascades in planetesimal disks. II. Embedded planets. AJ, 127, 513–530.CrossRefGoogle Scholar
Kenyon, S. J., and Bromley, B. C. 2004b. Detecting the dusty debris of terrestrial planet formation. ApJL, 602, L133–L136.CrossRefGoogle Scholar
Kenyon, S. J., and Hartmann, L. 1995. Pre-main-sequence evolution in the Taurus-Auriga molecular cloud. ApJS, 101, 117.CrossRefGoogle Scholar
Kesden, M. 2012. Tidal-disruption rate of stars by spinning supermassive black holes. PhRvD, 85(2), 024037.Google Scholar
King, A. R. 2006. Accretion in compact binaries, pp. 507–546 of: Lewin, W., and van der Klis, M. (eds.), Compact Stellar X-Ray Sources. Cambridge University Press.Google Scholar
Klein, B., Jura, M., Koester, D., Zuckerman, B., and Melis, C. 2010. Chemical abundances in the externally polluted white dwarf GD 40: Evidence of a rocky extrasolar minor planet. ApJ, 709, 950–962.CrossRefGoogle Scholar
Kley, W., Papaloizou, J. C. B., and Lin, D. N. C. 1993. Twodimensional viscous accretion disk models. II –On viscous overstability. ApJ, 409, 739–747.CrossRefGoogle Scholar
Kobayashi, S., Laguna, P., Phinney, E. S., andMészáros, P. 2004. Gravitational waves and X-ray signals from stellar disruption by a massive black hole. ApJ, 615, 855–865.CrossRefGoogle Scholar
Koerner, D. W., Sargent, A. I., and Beckwith, S. V. W. 1993. A rotating gaseous disk around the T Tauri star GM Aurigae. Icarus, 106, 2.CrossRefGoogle Scholar
Koester, D., Provencal, J., and Shipman, H. L. 1997. Metals in the variable DA G29-38. A&A, 320, L57–L59.Google Scholar
Kokubo, E., and Ida, S. 1996. On runaway growth of planetesimals. Icarus, 123, 180–191.CrossRefGoogle Scholar
Kokubo, E., and Ida, S. 1998. Oligarchic growth of protoplanets. Icarus, 131, 171–178.CrossRefGoogle Scholar
Komossa, S., and Bade, N. 1999. The giant X-ray outbursts in NGC 5905 and IC 3599: Follow-up observations and outburst scenarios. A&A, 343, 775–787.Google Scholar
Kormendy, J., and Richstone, D. 1995. Inward bound –the search for supermassive black holes in galactic nuclei. ARAA, 33, 581.CrossRefGoogle Scholar
Korycansky, D. G., and Pringle, J. E. 1995. Axisymmetric waves in polytropic accretion discs. MNRAS, 272, 618–624.CrossRefGoogle Scholar
Kotze, M. M., and Charles, P. A. 2012. Characterizing X-ray binary long-term variability. MNRAS, 420, 1575–1589.CrossRefGoogle Scholar
Kraft R, P. 1962. Binary stars among cataclysmic variables. I. U Geminorum stars (dwarf Novae). ApJ, 135, 408.CrossRefGoogle Scholar
Kraft, R. P. 1964. Binary stars among cataclysmic variables. III. Ten old novae. ApJ, 139, 457.CrossRefGoogle Scholar
Kral, Q., Thébault, P., and Charnoz, S. 2013. LIDT-DD: A new self-consistent debris disc model that includes radiation pressure and couples dynamical and collisional evolution. A&A, 558, A121.Google Scholar
Krivov, A. V., Löhne, T., and Sremčević, M. 2006. Dust distributions in debris disks: effects of gravity, radiation pressure and collisions. A&A, 455, 509–519.Google Scholar
Kuiper, G. P. 1951. On the origin of the solar system. Proceedings of the National Academy of Science, 37, 1–14.CrossRefGoogle ScholarPubMed
Kunz, M. W., Schekochihin, A. A., and Stone, J. M. 2014. Firehose and mirror instabilities in a collisionless shearing plasma. Physical Review Letters, 112(20), 205003.CrossRefGoogle Scholar
Lada, C. J., and Wilking, B. A. 1984. The nature of the embedded population in the Rho Ophiuchi dark cloud –Mid-infrared observations. ApJ, 287, 610–621.CrossRefGoogle Scholar
Lagrange, A. -M., Gratadour, D., Chauvin, G., et al. 2009. A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L'-band imaging. A&A, 493, L21–L25.Google Scholar
Lambrechts, M., and Johansen, A. 2012. Rapid growth of gas-giant cores by pebble accretion. A&A, 544, A32.Google Scholar
Lasota, J. -P. 2001. The disc instability model of dwarf novae and lowmass X-ray binary transients. NewAR, 45, 449–508.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2006a. The linear stability of dilute particulate rings. Icarus, 184, 498–516.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2006b. Viscous overstability and eccentricity evolution in three-dimensional gaseous discs. MNRAS, 372, 1829–1839.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2008. Dense planetary rings and the viscous overstability. Icarus, 195, 725–751.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2009. The viscous overstability, nonlinear wavetrains, and finescale structure in dense planetary rings. Icarus, 202(Aug.), 565–583.CrossRefGoogle Scholar
Latter, H. N., and Ogilvie, G. I. 2010. Hydrodynamical simulations of viscous overstability in Saturn's rings. Icarus, 210, 318–329.CrossRefGoogle Scholar
Latter, H. N., and Papaloizou, J. C. B. 2012. Hysteresis and thermal limit cycles in MRI simulations of accretion discs. MNRAS, 426, 1107–1120.CrossRefGoogle Scholar
Latter, H. N., Ogilvie, G. I., and Chupeau, M. 2012a. The ballistic transport instability in Saturn's rings –I. Formalism and linear theory. MNRAS, 427, 2336–2348.CrossRefGoogle Scholar
Latter, H. N., Rein, H., and Ogilvie, G. I. 2012b. The gravitational instability of a stream of co-orbital particles. MNRAS, 423, 1267–1276.CrossRefGoogle Scholar
Latter, H. N., Ogilvie, G. I., and Chupeau, M. 2014a. The ballistic transport instability in Saturn's rings –II. Non-linear wave dynamics. MNRAS, 441, 2760–2772.Google Scholar
Latter, H. N., Ogilvie, G. I., and Chupeau, M. 2014b. The ballistic transport instability in Saturn's rings –III. Numerical simulations. MNRAS, 441, 2773–2781.Google Scholar
Leinhardt, Z. M., and Richardson, D. C. 2002. N-Body simulations of planetesimal evolution: Effect of varying impactor mass ratio. Icarus, 159, 306–313.CrossRefGoogle Scholar
Leinhardt, Z. M., and Stewart, S. T. 2012. Collisions between gravitydominated bodies. I. Outcome regimes and scaling laws. ApJ, 745, 79.CrossRefGoogle Scholar
Leinhardt, Z. M., Ogilvie, G. I., Latter, H. N., and Kokubo, E. 2012. Tidal disruption of satellites and formation of narrow rings. MNRAS, 424, 1419–1431.CrossRefGoogle Scholar
Lesur, G., and Ogilvie, G. I. 2010. On the angular momentum transport due to vertical convection in accretion discs. MNRAS, 404, L64–L68.CrossRefGoogle Scholar
Lesur, G., and Papaloizou, J. C. B. 2010a. The subcritical baroclinic instability in local accretion disc models. A&A, 513, A60.Google Scholar
Lesur, G., and Papaloizou, J. C. B. 2010b. The subcritical baroclinic instability in local accretion disc models. A&A, 513, A60.Google Scholar
Lesur, G., Hennebelle, P., and Fromang, S. 2015. Spiral-driven accretion in protoplanetary discs. I. 2D models. A&A, 582, L9.Google Scholar
Lewis, M. C., and Stewart, G. R. 2000. Collisional dynamics of perturbed planetary rings. I. AJ, 120, 3295–3310.CrossRefGoogle Scholar
Lewis, M. C., and Stewart, G. R. 2009. Features around embedded moonlets in Saturn's rings: The role of self-gravity and particle size distributions. Icarus, 199, 387–412.CrossRefGoogle Scholar
Lightman, A. P., and Eardley, D. M. 1974. Black holes in binary systems: Instability of disk accretion. ApJL, 187, L1.CrossRefGoogle Scholar
Lin, C. C., and Shu, F. H. 1964. On the spiral structure of disk galaxies. ApJ, 140, 646.CrossRefGoogle Scholar
Lin, D. N. C., and Bodenheimer, P. 1981. On the stability of Saturn's rings. ApJL, 248, L83–L86.CrossRefGoogle Scholar
Lin, D. N. C., and Papaloizou, J. 1986. On the tidal interaction between protoplanets and the protoplanetary disk. III -Orbital migration of protoplanets. ApJ, 309, 846–857.CrossRefGoogle Scholar
Lin, D. N. C., and Papaloizou, J. C. B. 1993. On the tidal interaction between protostellar disks and companions. Pages 749–835
Levy, E. H., and Lunine, J. I. (eds.), Protostars and Planets III. Lissauer J, J., Squyres, S. W., and Hartmann, W. K. 1988. Bombardment history of the Saturn system. JGR, 93, 13776–13804.Google Scholar
Löhne, T., Augereau, J. -C., Ertel, S., et al. 2012. Modelling the huge, Herschel-resolved debris ring around HD 207129. A&A, 537, A110.Google Scholar
Longaretti, P. -Y. 1989. Saturn's main ring particle size distribution –An analytic approach. Icarus, 81, 51–73.CrossRefGoogle Scholar
Longaretti, P. -Y., and Rappaport, N. 1995. Viscous overstabilities in dense narrow planetary rings. Icarus, 116, 376–396.CrossRefGoogle Scholar
Loska, Z. 1986. Three-dimensional waves in disks. AcA, 36, 43–61.Google Scholar
Lubow, S. H. 1991. A model for tidally driven eccentric instabilities in fluid disks. ApJ, 381, 259–267.Google Scholar
Lubow, S. H., and Ogilvie, G. I. 2001. Secular interactions between inclined planets and a gaseous disk. ApJ, 560, 997–1009.CrossRefGoogle Scholar
Lubow, S. H., and Pringle, J. E. 1993. Wave propagation in accretion disks –Axisymmetric case. ApJ, 409, 360–371.CrossRefGoogle Scholar
Lukkari, J. 1981. Collisional amplification of density fluctuations in Saturn's rings. Nature, 292, 433–435.CrossRefGoogle Scholar
Lynden-Bell, D. 1967. Statistical mechanics of violent relaxation in stellar systems. MNRAS, 136, 101.CrossRefGoogle Scholar
Lynden-Bell, D. 1969. Galactic nuclei as collapsed old quasars. Nature, 223, 690–694.CrossRefGoogle Scholar
Lynden-Bell, D., and Pringle, J. E. 1974. The evolution of viscous discs and the origin of the nebular variables. MNRAS, 168, 603–637.CrossRefGoogle Scholar
Lyubarskij, Y. E., Postnov, K. A., and Prokhorov, M. E. 1994. Eccentric accretion discs. MNRAS, 266, 583.CrossRefGoogle Scholar
Macchetto, F., Marconi, A., Axon, D. J., et al. 1997. The supermassive black hole of M87 and the kinematics of its associated gaseous disk. ApJ, 489, 579–600.CrossRefGoogle Scholar
Marconi, A., Risaliti, G., Gilli, R., et al. 2004. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. MNRAS, 351, 169–185.CrossRefGoogle Scholar
Marino, S., Perez, S., and Casassus, S. 2015. Shadows cast by a warp in the HD 142527 protoplanetary disk. ApJL, 798, L44.CrossRefGoogle Scholar
Marley, M. S. 1991. Nonradial oscillations of Saturn. Icarus, 94, 420–435.CrossRefGoogle Scholar
Masset F, S., Morbidelli, A., Crida, A., and Ferreira, J. 2006. Disk surface density transitions as protoplanet traps. ApJ, 642, 478–487.CrossRefGoogle Scholar
Matthews, B. C., Krivov, A. V., Wyatt, M. C., Bryden, G., and Eiroa, C. 2014. Observations, modeling, and theory of debris disks. Protostars and Planets VI, 521–544.
Mayor, M., and Queloz, D. 1995. A Jupiter-mass companion to a solartype star. Nature, 378, 355–359.CrossRefGoogle Scholar
McCaughrean, M. J., and O'Dell, C. R. 1996. Direct imaging of circumstellar disks in the Orion Nebula. AJ, 111, 1977.CrossRefGoogle Scholar
McConnell, N. J., Ma, C. -P., Gebhardt, K., et al. 2011. Two ten-billionsolar-mass black holes at the centres of giant elliptical galaxies. Nature, 480, 215–218.CrossRefGoogle ScholarPubMed
McKee, C. F., and Ostriker, J. P. 1977. A theory of the interstellar medium –Three components regulated by supernova explosions in an inhomogeneous substrate. ApJ, 218, 148–169.CrossRefGoogle Scholar
McKee, C. F., and Ostriker, E. C. 2007. Theory of star formation. ARAA, 45, 565–687.CrossRefGoogle Scholar
Meinke, B. K., Esposito, L. W., Albers, N., and Sremčević, M. 2012. Classification of F ring features observed in Cassini UVIS occultations. Icarus, 218, 545–554.CrossRefGoogle Scholar
Merritt, D. 2013. Dynamics and Evolution of Galactic Nuclei. Princeton University Press.Google Scholar
Meyer, F., and Meyer-Hofmeister, E. 1981. On the elusive cause of cataclysmic variable outbursts. A&A, 104, L10.Google Scholar
Miley, G., and De Breuck, C. 2008. Distant radio galaxies and their environments. AARv, 15, 67–144.Google Scholar
Miranda, R., Horák, J., and Lai, D. 2015. Viscous driving of global oscillations in accretion discs around black holes. MNRAS, 446, 240–253.CrossRefGoogle Scholar
Miyoshi, M., Moran, J., Herrnstein, J., et al. 1995. Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258. Nature, 373, 127–129.CrossRefGoogle Scholar
Montmerle, T., Augereau, J. -C., Chaussidon, M., et al. 2006. From suns to life: A chronological approach to the history of life on Earth 3. Solar system formation and early evolution: the first 100 million years. Earth Moon and Planets, 98, 39–95.CrossRefGoogle Scholar
Mouillet, D., Larwood, J. D., Papaloizou, J. C. B., and Lagrange, A. M. 1997. A planet on an inclined orbit as an explanation of the warp in the Beta Pictoris disc. MNRAS, 292, 896.CrossRefGoogle Scholar
Murray, C. D., Chavez, C., Beurle, K., et al. 2005. How Prometheus creates structure in Saturn's F ring. Nature, 437, 1326–1329.CrossRefGoogle ScholarPubMed
Muto, T., Grady, C. A., Hashimoto, J., et al. 2012. Discovery of smallscale spiral structures in the disk of SAO 206462 (HD 135344B): Implications for the physical state of the disk from spiral density wave theory. ApJL, 748, L22.CrossRefGoogle Scholar
Narayan, R., and Yi, I. 1994. Advection-dominated accretion: A selfsimilar solution. ApJL, 428, L13–L16.CrossRefGoogle Scholar
Narayan, R., Mahadevan, R., and Quataert, E. 1998. Advectiondominated accretion around black holes. Pages 148–182 of: Abramowicz M, A., Björnsson, G., and Pringle, J. E. (eds.), Theory of Black Hole Accretion Disks. Cambridge University Press.Google Scholar
Nelson, R. P., and Papaloizou, J. C. B. 2004. The interaction of giant planets with a disc with MHD turbulence –IV. Migration rates of embedded protoplanets. MNRAS, 350, 849–864.CrossRefGoogle Scholar
Nelson, R. P., Gressel, O., and Umurhan, O. M. 2013. Linear and nonlinear evolution of the vertical shear instability in accretion discs. MNRAS, 435, 2610–2632.CrossRefGoogle Scholar
Nesvold, E. R., Kuchner, M. J., Rein, H., and Pan, M. 2013. SMACK: A new algorithm for modeling collisions and dynamics of planetesimals in debris disks. ApJ, 777, 144.CrossRefGoogle Scholar
Netzer, H. 2015. Revisiting the unified model of active galactic nuclei. ARAA, 53, 365–408.CrossRefGoogle Scholar
Nicholson, P. D., French, R. G., Hedman, M. M., Marouf, E. A., and Colwell, J. E. 2014. Noncircular features in Saturn's rings I: The edge of the Bring. Icarus, 227, 152–175.CrossRefGoogle Scholar
Ogilvie, G. I. 1998. Waves and instabilities in a differentially rotating disc containing a poloidal magnetic field. MNRAS, 297, 291–314.CrossRefGoogle Scholar
Ogilvie, G. I. 1999. The non-linear fluid dynamics of a warped accretion disc. MNRAS, 304, 557–578.CrossRefGoogle Scholar
Ogilvie, G. I. 2001. Non-linear fluid dynamics of eccentric discs. MNRAS, 325, 231–248.CrossRefGoogle Scholar
Ogilvie, G. I. 2003. On the dynamics of magnetorotational turbulent stresses. MNRAS, 340, 969–982.CrossRefGoogle Scholar
Ogilvie, G. I. 2006. Non-linear bending waves in Keplerian accretion discs. MNRAS, 365, 977–990.CrossRefGoogle Scholar
Ogilvie, G. I., and Lubow, S. H. 2002. On the wake generated by a planet in a disc. MNRAS, 330, 950–954.CrossRefGoogle Scholar
Okazaki, A. T. 1991. Long-term V/R variations of Be stars due to global one-armed oscillations of equatorial disks. PASJ, 43, 75–94.Google Scholar
Okazaki, A. T., Kato, S., and Fukue, J. 1987. Global trapped oscillations of relativistic accretion disks. PASJ, 39, 457–473.Google Scholar
Paardekooper, S. -J. 2012. Numerical convergence in self-gravitating shearing sheet simulations and the stochastic nature of disc fragmentation. MNRAS, 421, 3286–3299.CrossRefGoogle Scholar
Paardekooper, S. -J., and Papaloizou, J. C. B. 2008. On disc protoplanet interactions in a non-barotropic disc with thermal diffusion. A&A, 485, 877–895.Google Scholar
Paardekooper, S. -J., and Papaloizou, J. C. B. 2009. On corotation torques, horseshoe drag and the possibility of sustained stalled or outward protoplanetary migration. MNRAS, 394, 2283–2296.CrossRefGoogle Scholar
Paczynski, B. 1977. A model of accretion disks in close binaries. ApJ, 216, 822–826.CrossRefGoogle Scholar
Papaloizou, J., and Pringle, J. E. 1977. Tidal torques on accretion discs in close binary systems. MNRAS, 181, 441–454.CrossRefGoogle Scholar
Papaloizou, J. C., and Savonije, G. J. 1991. Instabilities in selfgravitating gaseous discs. MNRAS, 248, 353–369.CrossRefGoogle Scholar
Papaloizou, J. C. B., and Lin, D. N. C. 1988. On the pulsational overstability in narrowly confined viscous rings. ApJ, 331, 838–860.CrossRefGoogle Scholar
Papaloizou, J. C. B., and Lin, D. N. C. 1995. On the dynamics of warped accretion disks. ApJ, 438, 841–851.CrossRefGoogle Scholar
Papaloizou, J. C. B., and Stanley, G. Q. G. 1986. The structure and stability of the accretion disc boundary layer. MNRAS, 220, 593–610.CrossRefGoogle Scholar
Papaloizou, J. C. B., and Terquem, C. 2006. Planet formation and migration. Reports on Progress in Physics, 69, 119–180.CrossRefGoogle Scholar
Patterson, J., Kemp, J., Jensen, L., et al. 2000. Superhumps in cataclysmic binaries. XVIII. IY Ursae Majoris. PASP, 112, 1567–1583.Google Scholar
Peale, S. J. 1999. Origin and evolution of the natural satellites. ARAA, 37, 533–602.CrossRefGoogle Scholar
Pérez L, M., Isella, A., Carpenter, J. M., and Chandler, C. J. 2014. Large-scale asymmetries in the transitional disks of SAO 206462 and SR 21. ApJL, 783, L13.CrossRefGoogle Scholar
Perrine, R. P., and Richardson, D. C. 2012. N-body simulations of cohesion in dense planetary rings: A study of cohesion parameters. Icarus, 219, 515–533.CrossRefGoogle Scholar
Perrine, R. P., Richardson, D. C., and Scheeres, D. J. 2011. A numerical model of cohesion in planetary rings. Icarus, 212, 719–735.CrossRefGoogle Scholar
Peterson, B. M. 2001. Variability of active galactic nuclei. Page 3 of: Aretxaga, I., Kunth, D., and Mújica, R. (eds.), Advanced Lectures on the Starburst-AGN. Singapore: World Scientific.Google Scholar
Petit, J. -M., Kavelaars, J. J., Gladman, B., and Loredo, T. 2008. Size Distribution of Multikilometer Transneptunian Objects, pp. 71–87.
Piran, T. 1978. The role of viscosity and cooling mechanisms in the stability of accretion disks. ApJ, 221, 652–660.CrossRefGoogle Scholar
Pollack, J. B. 1975. The rings of Saturn. SSRv, 18, 3–93.Google Scholar
Pollack, J. B., Grossman, A. S., Moore, R., and Graboske, Jr., H. C. 1976. The formation of Saturn's satellites and rings, as influenced by Saturn's contraction history. Icarus, 29, 35–48.CrossRefGoogle Scholar
Porco, C. C., and Goldreich, P. 1987. Shepherding of the Uranian rings. I. Kinematics. AJ, 93, 724.CrossRefGoogle Scholar
Pringle, J. E. 1981. Accretion discs in astrophysics. ARAA, 19, 137–162.CrossRefGoogle Scholar
Pudritz, R. E., Ouyed, R., Fendt, C., and Brandenburg, A. 2007. Disk winds, jets, and outflows: Theoretical and computational foundations. Protostars and Planets V, 277–294.
Quataert, E., and Chiang, E. I. 2000. Angular momentum transport in particle and fluid disks. ApJ, 543, 432–437.CrossRefGoogle Scholar
Quillen, A. C. 2006. Predictions for a planet just inside Fomalhaut's eccentric ring. MNRAS, 372, L14–L18.CrossRefGoogle Scholar
Quirrenbach, A., Buscher, D. F., Mozurkewich, D., Hummel, C. A., and Armstrong, J. T. 1994. Maximum-entropy maps of the Be shell star zeta Tauri from optical long-baseline interferometry. A&A, 283, L13–L16.Google Scholar
Rees, M. J. 1984. Black hole models for active galactic nuclei. ARAA, 22, 471–506.CrossRefGoogle Scholar
Rees, M. J. 1988. Tidal disruption of stars by black holes of 10 to the 6th–10 to the 8th solar masses in nearby galaxies. Nature, 333, 523–528.CrossRefGoogle Scholar
Rees, M. J., Begelman, M. C., Blandford, R. D., and Phinney, E. S. 1982. Ion-supported tori and the origin of radio jets. Nature, 295, 17–21.CrossRefGoogle Scholar
Rein, H. 2012. Planet–disc interaction in highly inclined systems. MNRAS, 422, 3611–3616.CrossRefGoogle Scholar
Rein, H., and Latter, H. N. 2013. Large-scale N-body simulations of the viscous overstability in Saturn's rings. MNRAS, 431, 145–158.CrossRefGoogle Scholar
Rein, H., and Papaloizou, J. C. B. 2009. On the evolution of mean motion resonances through stochastic forcing: fast and slow libration modes and the origin of HD 128311. A&A, 497, 595–609.Google Scholar
Rein, H., and Papaloizou, J. C. B. 2010. Stochastic orbital migration of small bodies in Saturn's rings. A&A, 524, A22+.Google Scholar
Remillard, R. A., and McClintock, J. E. 2006. X-ray properties of black-hole binaries. ARAA, 44, 49–92.CrossRefGoogle Scholar
Rice, W. K. M., Lodato, G., and Armitage, P. J. 2005. Investigating fragmentation conditions in self-gravitating accretion discs. MNRAS, 364, L56–L60.CrossRefGoogle Scholar
Rice, W. K. M., Paardekooper, S. -J., Forgan, D. H., and Armitage, P. J. 2014. Convergence of simulations of self-gravitating accretion discs –II. Sensitivity to the implementation of radiative cooling and artificial viscosity. MNRAS, 438, 1593–1602.CrossRefGoogle Scholar
Richardson, D. C., Quinn, T., Stadel, J., and Lake, G. 2000. Direct large-scale N-body simulations of planetesimal dynamics. Icarus, 143, 45–59.CrossRefGoogle Scholar
Ringl, C., Bringa, E. M., Bertoldi, D. S., and Urbassek, H. M. 2012. Collisions of porous clusters: A granular-mechanics study of compaction and fragmentation. ApJ, 752, 151.CrossRefGoogle Scholar
Rivinius, T., Carciofi, A. C., and Martayan, C. 2013. Classical Be stars. Rapidly rotating B stars with viscous Keplerian decretion disks. AARv, 21, 69.Google Scholar
Safronov, V. S. 1969. Evolution of the protoplanetary cloud and formation of the Earth and the planets. Nauka, Moscow (NASA technical Translation TTF-677).
Salo, H. 1991. Numerical simulations of dense collisional systems. Icarus, 90, 254–270.CrossRefGoogle Scholar
Salo, H. 1992. Gravitational wakes in Saturn's rings. Nature, 359, 619–621.CrossRefGoogle Scholar
Salo, H. 1995. Simulations of dense planetary rings. III. Selfgravitating identical particles. Icarus, 117, 287–312.CrossRefGoogle Scholar
Salo, H., and Schmidt, J. 2010. N-body simulations of viscous instability of planetary rings. Icarus, 206, 390–409.CrossRefGoogle Scholar
Salo, H., Schmidt, J., and Spahn, F. 2001. Viscous overstability in Saturn's Bring. I. Direct simulations and measurement of transport coefficients. Icarus, 153, 295–315.CrossRefGoogle Scholar
Salpeter, E. E. 1964. Accretion of interstellar matter by massive objects. ApJ, 140, 796–800.CrossRefGoogle Scholar
Sanchis-Ojeda, R., Rappaport, S., Pallè, E., et al. 2015. The K2-ESPRINT Project I: discovery of the disintegrating rocky planet K2-22b with a cometary head and leading tail. ApJ, 812, 112.CrossRefGoogle Scholar
Sandage, A., Osmer, P., Giacconi, R., et al. 1966. On the optical identification of SCO X-1. ApJ, 146, 316.CrossRefGoogle Scholar
Sargent, A. I., and Beckwith, S. 1987. Kinematics of the circumstellar gas of HL Tauri and R Monocerotis. ApJ, 323, 294–305.CrossRefGoogle Scholar
Savage, S. B., and Jeffrey, D. J. 1981. The stress tensor in a granular flow at high shear rates. Journal of Fluid Mechanics, 110, 255–272.CrossRefGoogle Scholar
Schmidt, J., and Salo, H. 2003. Weakly nonlinear model for oscillatory instability in Saturn's dense rings. Physical Review Letters, 90(6), 061102.CrossRefGoogle ScholarPubMed
Schmidt, J., Salo, H., Spahn, F., and Petzschmann, O. 2001. Viscous overstability in Saturn's B-ring. II. Hydrodynamic theory and comparison to simulations. Icarus, 153, 316–331.CrossRefGoogle Scholar
Schmit, U., and Tscharnuter, W. M. 1995. A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn's B-ring. Icarus, 115, 304–319.CrossRefGoogle Scholar
Schmit, U., and Tscharnuter, W. M. 1999. On the formation of the fine-scale structure in Saturn's Bring. Icarus, 138, 173–187.CrossRefGoogle Scholar
Searle, L., and Zinn, R. 1978. Compositions of halo clusters and the formation of the galactic halo. ApJ, 225, 357–379.CrossRefGoogle Scholar
Seizinger, A., and Kley, W. 2013. Bouncing behavior of microscopic dust aggregates. A&A, 551, A65.Google Scholar
Sfair, R., Winter, S. M. G., Mourão, D. C., and Winter, O. C. 2009. Dynamical evolution of Saturn's F ring dust particles. MNRAS, 395, 2157–2161.CrossRefGoogle Scholar
Shakura, N. I., and Sunyaev, R. A. 1973. Black holes in binary systems. Observational appearance. A&A, 24, 337–355.Google Scholar
Shakura, N. I., and Sunyaev, R. A. 1976. A theory of the instability of disk accretion on to black holes and the variability of binary X-ray sources, galactic nuclei and quasars. MNRAS, 175, 613–632.CrossRefGoogle Scholar
Shara, M. M. 1989. Recent progress in understanding the eruptions of classical novae. PASP, 101, 5–31.CrossRefGoogle Scholar
Showalter, M. R., Hedman, M. M., and Burns, J. A. 2011. The impact of comet Shoemaker-Levy 9 sends ripples through the rings of Jupiter. Science, 332, 711.CrossRefGoogle ScholarPubMed
Shu, F. H. 1992. The Physics of Astrophysics. Volume II: Gas Dynamics. Mill Valley, CA: University Science Books.Google Scholar
Shu, F. H., and Stewart, G. R. 1985. The collisional dynamics of particulate disks. Icarus, 62, 360–383.CrossRefGoogle Scholar
Smak, J. 1971. Eruptive binaries. II. U Geminorum. AcA, 21, 15.Google Scholar
Smith B, A., Soderblom, L. A., Banfield, D., et al. 1989. Voyager 2 at Neptune: Imaging science results. Science, 246, 1422–1449.CrossRefGoogle ScholarPubMed
Spahn, F., Hertzsch, J. -M., and Brilliantov, N. V. 1995. The role of particle collisions for the dynamics in planetary rings. Chaos Solitons and Fractals, 5, 1945–1964.CrossRefGoogle Scholar
Spitale, J. N., and Porco, C. C. 2010. Detection of free unstable modes and massive bodies in Saturn's outer Bring. AJ, 140, 1747–1757.CrossRefGoogle Scholar
Springel, V., White, S. D. M., Jenkins, A., et al. 2005. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 435, 629–636.CrossRefGoogle ScholarPubMed
Stansberry, J., Grundy, W., Brown, M., et al. 2008. Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope. pp. 161–179.
Strubbe, L. E., and Quataert, E. 2009. Optical flares from the tidal disruption of stars by massive black holes. MNRAS, 400, 2070–2084.CrossRefGoogle Scholar
Su, K. Y. L., Rieke, G. H., Stansberry, J. A., et al. 2006. Debris disk evolution around A stars. ApJ, 653, 675–689.CrossRefGoogle Scholar
Su, K. Y. L., Rieke, G. H., Stapelfeldt, K. R., et al. 2009. The Debris Disk Around HR 8799. ApJ, 705, 314–327.CrossRefGoogle Scholar
Supulver, K. D., Bridges, F. G., and Lin, D. N. C. 1995. The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces. Icarus, 113, 188–199.CrossRefGoogle Scholar
Supulver, K. D., Bridges, F. G., Tiscareno, S., Lievore, J., and Lin, D. N. C. 1997. The sticking properties of water frost produced under various ambient conditions. Icarus, 129, 539–554.CrossRefGoogle Scholar
Takahashi, S. Z., and Inutsuka, S. -I. 2014. Two-component secular gravitational instability in a protoplanetary disk: A possible mechanism for creating ring-like structures. ApJ, 794, 55.CrossRefGoogle Scholar
Tamayo, D., Triaud, A. H. M. J., Menou, K., and Rein, H. 2015. Dynamical stability of imaged planetary systems in formation: Application to HL Tau. ApJ, 805, 100.CrossRefGoogle Scholar
Tanaka, H., Inaba, S., and Nakazawa, K. 1996. Steady-state size distribution for the self-similar collision cascade. Icarus, 123, 450–455.CrossRefGoogle Scholar
Tauris, T. M., and van den Heuvel, E. P. J. 2006. Formation and evolution of compact stellar X-ray sources, pp. 623–665 of: Lewin, W., and van der Klis, M. (eds.), Compact Stellar X-Ray Sources. Cambridge University Press.Google Scholar
Testi, L., Birnstiel, T., Ricci, L., et al. 2014. Dust evolution in protoplanetary disks. Protostars and Planets VI, 339–361.
Teyssandier, J., and Ogilvie, G. I. 2016. Growth of eccentric modes in disc-planet interactions. MNRAS, 458, 3221–3247.CrossRefGoogle Scholar
Thébault, P., and Augereau, J. -C. 2007. Collisional processes and size distribution in spatially extended debris discs. A&A, 472, 169–185.Google Scholar
Thompson, W. T., Lumme, K., Irvine, W. M., Baum, W. A., and Esposito, L. W. 1981. Saturn's rings –Azimuthal variations, phase curves, and radial profiles in four colors. Icarus, 46, 187–200.CrossRefGoogle Scholar
Thomson, F. S., Marouf, E. A., Tyler, G. L., French, R. G., and Rappoport, N. J. 2007. Periodic microstructure in Saturn's rings A and B. GeoRL, 34, L24203.Google Scholar
Tiscareno, M. S. 2013. Amodified Type Imigrationmodel for propeller moons in Saturn's rings. PSS, 77, 136–142.Google Scholar
Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., and Porco, C. C. 2007. Cassini imaging of Saturn's rings. II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14–34.Google Scholar
Toomre, A. 1964. On the gravitational stability of a disk of stars. ApJ, 139, 1217–1238.CrossRefGoogle Scholar
Tremaine, S. 2003. On the origin of irregular structure in Saturn's rings. AJ, 125, 894–901.CrossRefGoogle Scholar
Ulrich, M. -H. 2000. The active galaxy NGC 4151: Archetype or exception? AARv, 10, 135–178.Google Scholar
van Lieshout, R., Min, M., and Dominik, C. 2014. Dusty tails of evaporating exoplanets. I. Constraints on the dust composition. A&A, 572, A76.Google Scholar
Varnière, P., and Tagger, M. 2006. Reviving dead zones in accretion disks by Rossby vortices at their boundaries. A&A, 446, L13–L16.Google Scholar
Verbiscer, A. J., Skrutskie, M. F., and Hamilton, D. P. 2009. Saturn's largest ring. Nature, 461, 1098–1100.CrossRefGoogle ScholarPubMed
Villaver, E., and Livio, M. 2007. Can planets survive stellar evolution? ApJ, 661, 1192–1201.CrossRefGoogle Scholar
Volonteri, M. 2010. Formation of supermassive black holes. AARv, 18, 279–315.Google Scholar
Wada, K., Tanaka, H., Suyama, T., Kimura, H., and Yamamoto, T. 2008. Numerical simulation of dust aggregate collisions. II. Compression and disruption of three-dimensional aggregates in head-on collisions. ApJ, 677, 1296–1308.CrossRefGoogle Scholar
Wada, K., Tanaka, H., Okuzumi, S., et al. 2013. Growth efficiency of dust aggregates through collisions with high mass ratios. A&A, 559, A62.Google Scholar
Wagoner, R. V. 1999. Relativistic diskoseismology. PhR, 311, 259–269.Google Scholar
Ward, W. R. 1981. On the radial structure of Saturn's rings. GeoRL, 8, 641–643.Google Scholar
Ward, W. R. 1997. Protoplanet migration by nebula tides. Icarus, 126, 261–281.CrossRefGoogle Scholar
Wardle, M. 1999. The Balbus–Hawley instability in weakly ionized discs. MNRAS, 307, 849–856.CrossRefGoogle Scholar
Warner, B. 1995. Cataclysmic variable stars. Cambridge Astrophysics Series, 28.Google Scholar
Warner, B., and Nather, R. E. 1971. Observations of rapid blue variables –II. U Geminorum. MNRAS, 152, 219–229.CrossRefGoogle Scholar
Weidenschilling, S. J. 1977. Aerodynamics of solid bodies in the solar nebula. MNRAS, 180, 57–70.CrossRefGoogle Scholar
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. 1984. Ring particles –Collisional interactions and physical nature. Pages 367–415 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson: University of Arizona Press.Google Scholar
Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F., and Ohtsuki, K. 1997. Accretional evolution of a planetesimal swarm. Icarus, 128, 429–455.CrossRefGoogle Scholar
Wetherill, G. W., and Stewart, G. R. 1989. Accumulation of a swarm of small planetesimals. Icarus, 77, 330–357.CrossRefGoogle Scholar
Wetherill, G. W., and Stewart, G. R. 1993. Formation of planetary embryos –Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190.CrossRefGoogle ScholarPubMed
Williams, J. P., and Cieza, L. A. 2011. Protoplanetary disks and their evolution. ARAA, 49, 67–117.CrossRefGoogle Scholar
Windmark, F., Birnstiel, T., Güttler, C., et al. 2012. Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. A&A, 540, A73.Google Scholar
Wisdom, J., and Tremaine, S. 1988. Local simulations of planetary rings. AJ, 95, 925–940.CrossRefGoogle Scholar
Wurm, G., Paraskov, G., and Krauss, O. 2005. Growth of planetesimals by impacts at 25 m/s. Icarus, 178, 253–263.CrossRefGoogle Scholar
Wyatt, M. C. 2003. Resonant trapping of planetesimals by planet migration: Debris disk clumps and Vega's similarity to the solar system. ApJ, 598, 1321–1340.CrossRefGoogle Scholar
Wyatt, M. C. 2005a. Spiral structure when setting up pericentre glow: possible giant planets at hundreds of AU in the HD 141569 disk. A&A, 440, 937–948.Google Scholar
Wyatt, M. C. 2005b. The insignificance of P-R drag in detectable extrasolar planetesimal belts. A&A, 433, 1007–1012.Google Scholar
Wyatt, M. C. 2008. Evolution of debris disks. ARAA, 46, 339–383.CrossRefGoogle Scholar
Wyatt, M. C., and Dent, W. R. F. 2002. Collisional processes in extrasolar planetesimal discs –dust clumps in Fomalhaut's debris disc. MNRAS, 334, 589–607.CrossRefGoogle Scholar
Wyatt, M. C., Panić, O., Kennedy, G. M., and Matrà, L. 2015. Five steps in the evolution from protoplanetary to debris disk. ApSS, 357, 103.Google Scholar
Xiang-Gruess, M. 2016. Generation of highly inclined protoplanetary discs through single stellar flybys. MNRAS, 455, 3086–3100.CrossRefGoogle Scholar
Xu, S., Jura, M., Koester, D., Klein, B., and Zuckerman, B. 2014. Elemental compositions of two extrasolar rocky planetesimals. ApJ, 783, 79.CrossRefGoogle Scholar
Youdin, A. N., and Goodman, J. 2005. Streaming instabilities in protoplanetary disks. ApJ, 620, 459–469.CrossRefGoogle Scholar
Zhang, K., Blake, G. A., and Bergin, E. A. 2015. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. ApJL, 806, L7.CrossRefGoogle Scholar
Zuckerman, B., Koester, D., Reid, I. N., and Hünsch, M. 2003. Metal lines in DA white dwarfs. ApJ, 596, 477–495.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×