Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: July 2010

Section 3: - Uterine vascular environment

References

1. GellersenB, BrosensI A, BrosensJ J. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med 2007; 25: 445–53.
2. LopesF L, DesmaraisJ A, MurphyB D. Embryonic diapause and its regulation. Reproduction 2004; 128: 669–78.
3. HamataniT, DaikokuT, WangHet al. Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci U S A 2004; 101: 10326–31.
4. de ZieglerD, FanchinR, de MoustierB, BullettiC. The hormonal control of endometrial receptivity: estrogen (E2) and progesterone. J Reprod Immunol 1998; 39: 149–66.
5. WilcoxA J, BairdD D, WeinbergC R. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 1999; 340: 1796–9.
6. ParkI H, ZhaoR, WestJ Aet al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451: 141–6.
7. TakanoM, LuZ, GotoTet al. Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol 2007; 21: 2334–49.
8. AplinJ D, CharltonA K, AyadS. An immunohistochemical study of human endometrial extracellular matrix during the menstrual cycle and first trimester of pregnancy. Cell Tissue Res 1988; 253: 231–40.
9. PopoviciR M, BetzlerN K, KrauseM Set al. Gene expression profiling of human endometrial-trophoblast interaction in a coculture model. Endocrinology 2006; 147: 5662–75.
10. ClokeB, HuhtinenK, FusiLet al. The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology 2008; 149: 4462–74.
11. OliverC, MontesM J, GalindoJ A, RuizC, OlivaresE G. Human decidual stromal cells express alpha-smooth muscle actin and show ultrastructural similarities with myofibroblasts. Hum Reprod 1999; 14: 1599–605.
12. BrarA K, HandwergerS, KesslerC A, AronowB J. Gene induction and categorical reprogramming during in vitro human endometrial fibroblast decidualization. Physiol Genomics 2001; 7: 135–48.
13. BellS C, JacksonJ A, AshmoreJ, ZhuH H, TsengL. Regulation of insulin-like growth factor-binding protein-1 synthesis and secretion by progestin and relaxin in long term cultures of human endometrial stromal cells. J Clin Endocrinol Metab 1991; 72: 1014–24.
14. BrosensJ J, HayashiN, WhiteJ O. Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cells. Endocrinology 1999; 140: 4809–20.
15. LynchV J, TanzerA, WangYet al. Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proc Natl Acad Sci U S A 2008; 105: 14928–33.
16. DimitriadisE, WhiteC A, JonesR L, SalamonsenL A. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update 2005; 11: 613–30.
17. JonesR L, HannanN J, Kaitu’uT J, ZhangJ, SalamonsenL A. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab 2004; 89: 6155–67.
18. CornetP B, PicquetC, LemoinePet al. Regulation and function of LEFTY-A/EBAF in the human endometrium: mRNA expression during the menstrual cycle, control by progesterone, and effect on matrix metalloprotineases. J Biol Chem 2002; 277: 42496–504.
19. RiesewijkA, MartinJ, van OsRet al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod 2003; 9: 253–64.
20. BrarA K, FrankG R, KesslerC A, CedarsM I, HandwergerS. Progesterone-dependent decidualization of the human endometrium is mediated by cAMP. Endocrine 1997; 6: 301–7.
21. TanakaN, MiyazakiK, TashiroH, MizutaniH, OkamuraH. Changes in adenylyl cyclase activity in human endometrium during the menstrual cycle and in human decidua during pregnancy. J Reprod Fertil 1993; 98: 33–9.
22. MilneS A, PerchickG B, BoddyS C, JabbourH N. Expression, localization, and signaling of PGE(2) and EP2/EP4 receptors in human nonpregnant endometrium across the menstrual cycle. J Clin Endocrinol Metab 2001; 86: 4453–9.
23. PalejwalaS, TsengL, WojtczukA, WeissG, GoldsmithL T. Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol Reprod 2002; 66: 1743–8.
24. ZoumakisE, MargiorisA N, StournarasCet al. Corticotrophin-releasing hormone (CRH) interacts with inflammatory prostaglandins and interleukins and affects the decidualization of human endometrial stroma. Mol Hum Reprod 2000; 6: 344–51.
25. BartschO, BartlickB, IvellR. Phosphodiesterase 4 inhibition synergizes with relaxin signaling to promote decidualization of human endometrial stromal cells. J Clin Endocrinol Metab 2004; 89: 324–34.
26. RowanB G, GarrisonN, WeigelN L, O’MalleyB W. 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol 2000; 20: 8720–30.
27. MakI Y, BrosensJ J, ChristianMet al. Regulated expression of signal transducer and activator of transcription, Stat5, and its enhancement of PRL expression in human endometrial stromal cells in vitro. J Clin Endocrinol Metab 2002; 87: 2581–8.
28. ChristianM, ZhangX, Schneider-MerckTet al. Cyclic AMP-induced forkhead transcription factor, FKHR, cooperates with CCAAT/enhancer-binding protein beta in differentiating human endometrial stromal cells. J Biol Chem 2002; 277: 20825–32.
29. JonesM C, FusiL, HighamJ Het al. Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc Natl Acad Sci U S A 2006; 103: 16272–7.
30. KerscherO, FelberbaumR, HochstrasserM. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006; 22: 159–80.
31. MassafraC, De FeliceC, AgnusdeiD P, GioiaD, BagnoliF. Androgens and osteocalcin during the menstrual cycle. J Clin Endocrinol Metab 1999; 84: 971–4.
32. BonneyR C, ScanlonM J, JonesD L, ReedM J, JamesV H. Adrenal androgen concentrations in endometrium and plasma during the menstrual cycle. J Endocrinol 1984; 101: 181–8.
33. CastracaneV D, StewartD R, GimpelT, OverstreetJ W, LasleyB L. Maternal serum androgens in human pregnancy: early increases within the cycle of conception. Hum Reprod 1998; 13: 460–4.
34. TanakaK, MinouraH, IsobeTet al. Ghrelin is involved in the decidualization of human endometrial stromal cells. J Clin Endocrinol Metab 2003; 88: 2335–40.
35. BaoL, TessierC, Prigent-TessierAet al. Decidual prolactin silences the expression of genes detrimental to pregnancy. Endocrinology 2007; 148: 2326–34.
36. MatsumotoH, SakaiK, IwashitaM. Insulin-like growth factor binding protein-1 induces decidualization of human endometrial stromal cells via alpha5beta1 integrin. Mol Hum Reprod 2008; 14: 485–9.
37. MaruyamaT, YoshimuraY, SabeH. Tyrosine phosphorylation and subcellular localization of focal adhesion proteins during in vitro decidualization of human endometrial stromal cells. Endocrinology 1999; 140: 5982–90.
38. KimH, LaingM, MullerW. c-Src-null mice exhibit defects in normal mammary gland development and ERalpha signaling. Oncogene 2005; 24: 5629–36.
39. LockwoodC J, KrikunG, SchatzF. The decidua regulates hemostasis in human endometrium. Semin Reprod Endocrinol 1999; 17: 45–51.
40. DietlJ, HonigA, KammererU, RiegerL. Natural killer cells and dendritic cells at the human feto-maternal interface: an effective cooperation?Placenta 2006; 27: 341–7.
41. KoopmanL A, KopcowH D, RybalovBet al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003; 198: 1201–12.
42. LedeeN, ChaouatG, SerazinVet al. Endometrial vascularity by three-dimensional power Doppler ultrasound and cytokines: a complementary approach to assess uterine receptivity. J Reprod Immunol 2008; 77: 57–62.
43. PlaksV, BirnbergT, BerkutzkiTet al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 2008; 118: 3954–65.
44. KitayaK, YamaguchiT, HonjoH. Central role of interleukin-15 in postovulatory recruitment of peripheral blood CD16(-) natural killer cells into human endometrium. J Clin Endocrinol Metab 2005; 90: 2932–40.
45. NguyenJ T, EvansD P, GalvanMet al. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J Immunol 2001; 167: 5697–707.
46. RachmilewitzJ, BorovskyZ, RielyG J, MillerR, TykocinskiM L. Negative regulation of T cell activation by placental protein 14 is mediated by the tyrosine phosphatase receptor CD45. J Biol Chem 2003; 278: 14059–65.
47. KudoY, HaraT, KatsukiTet al. Mechanisms regulating the expression of indoleamine 2,3-dioxygenase during decidualization of human endometrium. Hum Reprod 2004; 19: 1222–30.
48. MellorA L, ChandlerP, LeeG Ket al. Indoleamine 2,3-dioxygenase, immunosuppression and pregnancy. J Reprod Immunol 2002; 57: 143–50.
49. MunnD H, ZhouM, AttwoodJ Tet al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281: 1191–3.
50. HarirahH M, DoniaS E, ParkashV, JonesD C, HsuC D. Localization of the Fas-Fas ligand system in human fetal membranes. J Reprod Med 2002; 47: 611–6.
51. KajiharaT, JonesM, FusiLet al. Differential expression of FOXO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization. Mol Endocrinol 2006; 20: 2444–55.
52. DriverP M, KilbyM D, BujalskaIet al. Expression of 11 beta-hydroxysteroid dehydrogenase isozymes and corticosteroid hormone receptors in primary cultures of human trophoblast and placental bed biopsies. Mol Hum Reprod 2001; 7: 357–63.
53. BlancoO, TiradoI, Munoz-FernandezRet al. Human decidual stromal cells express HLA-G: effects of cytokines and decidualization. Hum Reprod 2008; 23: 144–52.
54. JauniauxE, WatsonA L, HempstockJet al. Onset of maternal arterial blood flow and placental oxidative stress: a possible factor in human early pregnancy failure. Am J Pathol 2000; 157: 2111–22.
55. ThannickalV J, FanburgB L. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279: L1005–28.
56. TranH, BrunetA, GrenierJ Met al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 2002; 296: 530–4.
57. DaviesK J. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 2000; 50: 279–89.
58. BorthwickJ M, Charnock-JonesD S, TomB Det al. Determination of the transcript profile of human endometrium. Mol Hum Reprod 2003; 9: 19–33.
59. StrakovaZ, SrisuparpS, FazleabasA T. IL-1beta during in vitro decidualization in primate. J Reprod Immunol 2002; 55: 35–47.
60. PohnkeY, Schneider-MerckT, FahnenstichJet al. Wild-type p53 protein is up-regulated upon cyclic adenosine monophosphate-induced differentiation of human endometrial stromal cells. J Clin Endocrinol Metab 2004; 89: 5233–44.
61. LevineA J. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–31.
62. ThyssR, VirolleV, ImbertVet al. NF-kappaB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. Embo J 2005; 24: 128–37.
63. BrosensI, RobertsonW B, DixonH G. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol 1967; 93: 569–79.
64. KingA. Uterine leukocytes and decidualization. Hum Reprod Update 2000; 6: 28–36.
65. BrosensJ J, GellersenB. Death or survival – progesterone-dependent cell fate decisions in the human endometrial stroma. J Mol Endocrinol 2006; 36: 389–98.
66. BrosensJ J, ParkerM G, McIndoeA, PijnenborgR, BrosensI A. A role for menstruation in preconditioning the uterus for successful pregnancy. Am J Obstet Gynecol 2009; 200: 615.e1–615.e6.
67. SaftlasA F, OlsonD R, FranksA L, AtrashH K, PokrasR. Epidemiology of preeclampsia and eclampsia in the United States, 1979–1986. Am J Obstet Gynecol 1990; 163: 460–5.
68. HongY, WangX, LuP, SongY, LinQ. Killer immunoglobulin-like receptor repertoire on uterine natural killer cell subsets in women with recurrent spontaneous abortions. Eur J Obstet Gynecol Reprod Biol 2008; 140: 218–23.
69. CliffordK, FlanaganA M, ReganL. Endometrial CD56+ natural killer cells in women with recurrent miscarriage: a histomorphometric study. Hum Reprod 1999; 14: 2727–30.
70. TuckermanE, LairdS M, PrakashA, LiT C. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Hum Reprod 2007; 22: 2208–13.
71. QuenbyS, BatesM, DoigTet al. Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Hum Reprod 1999; 14: 2386–91.
72. WhitleyG S, DashP R, AylingL Jet al. Increased apoptosis in first trimester extravillous trophoblasts from pregnancies at higher risk of developing preeclampsia. Am J Pathol 2007; 170: 1903–9.
73. HuppertzB, SammarM, ChefetzIet al. Longitudinal determination of serum placental protein 13 during development of preeclampsia. Fetal Diagn Ther 2008; 24: 230–6.
74. BaumannM U, BersingerN A, MohauptM Get al. First-trimester serum levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsia. Am J Obstet Gynecol 2008; 199: 266 e1–6.

References

1. LokeY W, KingA. Human implantation. Cambridge: CUP; 1995.
2. MoffettA, LokeC. Immunology of placentation in eutherian mammals. Nat Rev Immunol 2006; 6: 584–94.
3. Moffett-KingA. Natural killer cells and pregnancy. Nat Rev Immunol 2002; 2: 656–63.
4. Red-HorseK, RiveraJ, SchanzAet al. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J Clin Invest 2006; 116: 2643–52.
5. KirbyD R. Development of mouse eggs beneath the kidney capsule. Nature 1960; 187: 707–8.
6. McLarenA. In: ParkW W, ed. The early conceptus, normal and abnormal. Edinburgh: University of St Andrews Press; 1965: pp. 27–33.
7. TrundleyA, MoffettA. Human uterine leukocytes and pregnancy. Tissue Antigens 2004; 63: 1–12.
8. MarchandF. Ueber die sogenannten dezidualen Geschwülste im Anschluss an normale Geburt, Blasenmole und Extrauterinschwangerschaft. Mschr Geburtsh Gynäk 1895; 1: 419.
9. WeillP. Etudes sur les leukocytes I. Les cellules granuleuses des muqueuses intestinales et utérines. Arch Anat Microsc 1921; 17: 77–82.
10. HamperlH, HellwegG. Granular endometrial stroma cells. Obstet Gynecol 1958; 11: 379–87.
11. Von NumersC. On the specific granular cells (globular leukocytes) of the human endometrium. Acta Pathol Microbiol Scand 1953; 33: 250–6.
12. KazzazB A. Specific endometrial granular cells: a semiquantitative study. Eur J Obstet Gynecol 1972; 3: 77–84.
13. RitsonA, BulmerJ N. Endometrial granulocytes in human decidua react with a natural killer (NK) cell marker NKH1. Immunology 1987; 62: 329–31.
14. KingA, WellingsV, GardnerL, LokeY W. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Hum Immunol 1989; 24(3):195–205.
15. KingA. Uterine leukocytes and decidualization. Hum Reprod Update 2000; 6: 28–36.
16. BulmerJ N, LashG E. Human uterine natural killer cells: a reappraisal. Mol Immunol 2005; 42:511–21 [Review].
17. KingA, GardnerL, LokeY W. Evaluation of oestrogen and progesterone receptor expression in uterine mucosal lymphocytes. Hum Reprod 1996; 11: 1079–82.
18. HendersonT A, SaundersP T, Moffett-KingAet al. Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab 2003; 88: 440–9.
19. VermaS, HibyS E, LokeY W, KingAet al. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol Reprod 2000; 62: 959–68.
20. KitayaK, YamaguchiT, HonjoH. Central role of interleukin-15 in postovulatory recruitment of peripheral blood CD16(-) natural killer cells into human endometrium. J Clin Endocrinol Metab 2005; 90: 2932–40.
21. SunR, LiA L, WeiH M, TianZ G. Expression of prolactin receptor and response to prolactin stimulation of human NK cell lines. Cell Res 2004; 14: 67–73.
22. KingA, BalendranN, WoodingP, LokeY Wet al. CD3-leukocytes present in the human uterus during early placentation: phenotypic and morphologic characterization of the CD56++ population. Dev Immunol 1991; 1: 169–90.
23. KoopmanL A, KopcowH D, RybalovBet al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003; 198: 1201–12.
24. LynchL, Golden-MasonL, EoganMet al. Cells with haematopoietic stem cell phenotype in adult human endometrium: relevance to infertility? Hum Reprod 2007; 22: 919–26.
25. KeskinD B, AllanD S, RybalovBet al. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA 2007; 104: 3378–83.
26. PaceD, MorrisonL, BulmerJ Net al. Proliferative activity in endometrial stromal granulocytes throughout menstrual cycle and early pregnancy. J Clin Pathol 1989; 42: 35–9.
27. ChantakruS, MillerC, RoachL Eet al. Contributions from self-renewal and trafficking to the uterine NK cell population of early pregnancy. J Immunol 2002; 168: 22–8.
28. SentmanC L, MeadowsS K, WiraC Ret al. Recruitment of uterine NK cells: induction of CXC chemokine ligands 10 and 11 in human endometrium by estradiol and progesterone. J Immunol 2004; 173: 6760–6.
29. CritchleyH O, KellyR W, BrennerR Met al. The endocrinology of menstruation – a role for the immune system. Clin Endocrinol 2001; 55: 701–10.
30. JabbourH N, KellyR W, FraserH Met al. Endocrine regulation of menstruation. Endocrin Rev 2006; 27: 17–46.
31. PongcharoenS, BulmerJ N, SearleR Fet al. No evidence for apoptosis of decidual leukocytes in normal and molar pregnancy: implications for immune privilege. Clin Exp Immunol 2004; 138: 330–6.
32. KroemerG, MartinS K. Caspase independent cell death. Nat Med 2005; 11: 725–30.
33. LangerN, BeachD, LindenbaumE Set al. Novel hyperactive mitogen to endothelial cells: human decidual NKG5. Am J Reprod Immunol 1999; 42: 263–72.
34. LiX F, Charnock-JonesD S, ZhangEet al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab 2001; 86: 1823–34.
35. LashG E, SchiesslB, KirkleyMet al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol 2006; 80: 572–80.
36. SanosS L, BuiV L, MorthaAet al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009; 10: 11–2.
37. KingA, AllanDS J, BowenM Jet al. HLA-E is expressed on trophoblast cells and interacts with CD94/NKG2A receptors on decidual NK cells. Eur J Immunol 2000; 30: 1623–31.
38. KingA, BurrowsT D, HibyS Eet al. Surface expression of HLA-C antigen by human extravillous trophoblast. Placenta 2000; 21: 376–87.
39. AppsR, MurphyS P, FernandoRet al. Human leukocyte antigen (HLA) expression by normal trophoblast cells and placental cell lines using a novel method to characterize allotype specificity of anti-HLA antibodies. Immunology, in press.
40. LazeticS, ChangC, HouchinsJ Pet al. Human natural killer cell receptors involved in MHC class I recognition are disulphide linked heterodimers of CD94 and NKG2 subunits. J Immunol 1996; 157: 4741–5.
41. LlanoM, LeeN, NavarroFet al. HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential response to an HLA-G-derived nonamer. Eur J Immunol 1998; 28: 2854–63.
42. KovatsS, MainE K, LibrachCet al. A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990; 248: 220–3.
43. McMasterM T, LibrachC L, ZhouYet al. Human placental HLA-G expression is restricted to differentiated cytotrophoblasts. J Immunol 1995; 154: 3771–8.
44. LokeY W, KingA, BurrowsTet al. Evaluation of trophoblast HLA-G antigen with a specific monoclonal antibody. Tissue Antigens 1997; 50: 135–46.
45. BainbridgeD, EllisS, Le BouteillerP, SargentI. HLA-G remains a mystery. Trends Immunol 2001; 22: 548–52.
46. AppsR, GardnerL, MoffettAet al. A critical look at HLA-G. Trends Immunol 2008; 29: 313–21.
47. BoysonJ E, ErskineR, WhitmanM Cet al. Disulfide bond-mediated dimerization of HLA-G on the cell surface. Proc Natl Acad Sci USA 2002; 99: 16180–5.
48. Gonen-GrossT, AchdoutH, GazitRet al. Complexes of HLA-G protein on the cell surface are important for leukocyte Ig-like receptor-1 function. J Immunol 2003; 171: 1343–51.
49. AppsR, GardnerL, SharkeyA Met al. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol 2007; 37: 1727–9.
50. Arnaiz-VillenaA, MoralesP, Gomez-CasadoEet al. Evolution of MHC-G in primates: a different kind of molecule for each group of species. J Reprod Immunol 1999; 43: 111–25.
51. BorgesL, HsuM L, FangerNKubinM, CosmanD. A family of human lymphoid and myeloid Ig-like receptors, some of which bind to MHC class I molecules. J Immunol 1997; 159: 5192–6.
52. ColonnaM, NavarroF, BellonTet al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 1997; 186: 1809–18.
53. ColonnaM, SamaridisJ, CellaMet al. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol 1998; 160: 3096–100.
54. BorgesL, CosmanD. LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev 2000; 11: 209–17.
55. AllanD S, ColonnaM, LanierL Let al. Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomonocytic cells. J Exp Med 1999; 189: 1149–56.
56. ChapmanT L, HeikemanA P, BjorkmanP Jet al. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 1999; 11: 603–13.
57. ShiroishiM, TsumotoK, AmanoKet al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci U S A 2003; 100: 8856–61.
58. ClementsC S, Kjer-NielsenL, KostenkoLet al. Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc Natl Acad Sci U S A 2005; 102: 3360–5.
59. Gonen-GrossT, AchdoutH, ArnonT Iet al. The CD85J/leukocyte inhibitory receptor-1 distinguishes between conformed and beta 2-microglobulin-free HLA-G molecules. J Immunol 2005; 175: 4866–74.
60. ShiroishiM, KurokiK, OseTet al. Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide-linked HLA-G dimer. J Biol Chem 2006; 281: 10439–47.
61. RajogopalanS, LongE O. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 1999; 189: 1093–100.
62. RajagopalanS, BrycesonY T, KuppusamyS Pet al. Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol 2006; 4:e9.
63. ChangC C, CiubotariuR, ManavalanJ Set al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002; 3: 237–43.
64. Le FriecG, LaupezeB, FardelOet al. Soluble HLA-G inhibits human dendritic cell-triggered allogeneic T-cell proliferation without altering dendritic differentiation and maturation processes. Hum Immunol 2003; 64: 752–61.
65. RistichV, LiangS, ZhangW, WuJ, HoruzskoA. Tolerization of dendritic cells by HLA-G. Eur J Immunol 2005; 35: 1133–42.
66. GardnerL, MoffettA. Dendritic cells in the human decidua. Biol Reprod 2003; 69: 1438–46.
67. ParhamP. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005; 5: 201–14.
68. GumperzJ E, ParhamP. The enigma of the natural killer cell. Nature 1995; 378: 245–8.
69. ParhamP. The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol 2008; 20: 311–6.
70. KulkarniS, MartinM P, CarringtonM. The Yin and Yang of HLA and KIR in human disease. Semin Immunol 2008; 20:343–52.
71. VermaS, KingA, LokeY Wet al. Expression of killer cell inhibitory receptors on human uterine natural killer cells. Eur J Immuol 1997; 27: 979–83.
72. SharkeyA M, GardnerL, HibySet al. Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J Immunol 2008; 181: 39–46.
73. DokunH O, KimS, SmithH Ret al. Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2001; 2: 951–6.
74. AppsR, GardnerL, HibyS Eet al. Conformation of human leucocyte antigen-C molecules at the surface of human trophoblast cells. Immunology 2008; 124: 322–8.
75. MoffettA, HibyS E. How does the maternal immune system contribute to the development of pre-eclampsia? Placenta 2007; 28(Suppl A): S51–S56.
76. HibyS E, WalkerJ J, O’ShaughnessyK Met al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 2004; 200: 957–65.
77. HibyS, ReganL, LoWet al. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum Reprod 2008; 23: 972–6.
78. TrowsdaleJ, MoffettA. NK receptor interactions with MHC class I molecules in pregnancy. Semin Immunol 2008; 20: 317–20.
79. HeldW. Tolerance and reactivity of NK cells: two sides of the same coin? Eur J Immunol 2008; 38: 2930–3 [Review].
80. SunJ C, BeilkeJ N, LanierL L. Adaptive immune features of natural killer cells. Nature 2009; 457: 557–61.
81. HannaJ, Goldman-WohlD, HamaniYet al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12: 1065–74.
82. CroyB A, van den HeuvelM J, BorzychowskiA Met al. Uterine natural killers cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev 2006; 214: 161–85.
83. RamseyE M, HoustonM L, HarrisJ Wet al. Interactions of the trophoblast and maternal tissues in three closely related primate species. Am J Obstet Gynecol. 1976; 124: 647–52.

References

1. RisauW. Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development. In: FeinbergR N, SherorG K, AuerbachR, eds. The development of the vascular system. Philadelphia: Krager; 1991: pp. 58–68.
2. Duc-GoiranP, MignotT M, BourgeoisC, et al. Embryo-maternal interactions at the implantation site: a delicate equilibrium. Eur J Obstet Gynecol Reprod Biol 1999; 83(1): 85–100.
3. GenbacevO, ZhouY, LudlowJ W, et al. Regulation of human placental development by oxygen tension. Science 1997; 277(5332): 1669–72.
4. KaufmannP, MayhewT M, Charnock-JonesD S. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta 2004; 25(2–3): 114–26.
5. JonesC J, JauniauxE. Ultrastructure of the materno-embryonic interface in the first trimester of pregnancy. Micron 1995; 26(2): 145–173.
6. BenirschkeK, KaufmannP. Architecture of normal villous tree. In: Pathology of the human placenta, 4th ed. New York: Springer-Verlag; 2000; ch 7.
7. RamseyE M, MartinC BJr, DonnerM W. Fetal and maternal placental circulations: simultaneous visualization in monkeys by radiography. Am J Obstet Gynecol 1967; 98(3): 419–23.
8. SchuhmannR A. Placentone structure of the human placenta. Bibl Anat 1982; 22: 46–57.
9. SevalY, KorgunE T, DemirR. Hofbauer cells in early human placenta: possible implications in vasculogenesis and angiogenesis. Placenta 2007; 28(8–9): 841–5.
10. de GrootC J, ChaoV A, RobertsJ M, TaylorR N. Human endothelial cell morphology and autacoid expression. Am J Physiol 1995; 268(4 Pt 2): H1613–20.
11. JauniauxE, WatsonA L, HempstockJ, et al. Onset of maternal arterial blood flow and placental oxidative stress: a possible factor in human early pregnancy failure. Am J Pathol 2000; 157(6): 2111–22.
12. JauniauxE, WatsonA, BurtonG. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am J Obstet Gynecol 2001; 184(5): 998–1003.
13. KadyrovM, KingdomJ C, HuppertzB. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol 2006; 194(2): 557–63.
14. KurzH, BurriP H, DjonovV G. Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci 2003; 18: 65–70.
15. PijnenborgR, VercruysseL, HanssensM. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 2006; 27(9–10): 939–58.
16. NanaevA, ChwaliszK, FrankH Get al. Physiological dilation of uteroplacental arteries in the guinea pig depends on nitric oxide synthase activity of extravillous trophoblast. Cell Tissue Res 1995; 282(3): 407–21.
17. LyallF, BulmerJ N, KellyHet al. Human trophoblast invasion and spiral artery transformation: the role of nitric oxide. Am J Pathol 1999; 154(4): 1105–14.
18. RoyH, BhardwajS, Yla-HerttualaS. Biology of vascular endothelial growth factors. FEBS Lett 2006; 580(12): 2879–87.
19. YamazakiY, MoritaT. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers 2006; 10(4): 515–27.
20. SatoY, KannoS, OdaNet al. Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction. Ann N Y Acad Sci 2000; 902: 201–5.
21. FujisawaH, KitsukawaT. Receptors for collapsin/semaphorins. Curr Opin Neurobiol 1998; 8(5): 587–92.
22. SokerS, TakashimaS, MiaoH Qet al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92(6): 735–45.
23. MaglioneD, GuerrieroV, VigliettoGet al. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A 1991; 88(20): 9267–71.
24. TayadeC, HilchieD, HeHet al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol 2007; 178(7): 4267–75.
25. CarmelietP, MoonsL, LuttunAet al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7(5): 575–83.
26. ParkJ E, ChenH H, WinerJet al. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 1994; 269(41): 25646–54.
27. AthanassiadesA, LalaP K. Role of placenta growth factor (PlGF) in human extravillous trophoblast proliferation, migration and invasiveness. Placenta 1998; 19(7): 465–73.
28. TakahashiT, YamaguchiS, ChidaKet al. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001; 20(11): 2768–78.
29. ShalabyF, RossantJ, YamaguchiT Pet al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376(6535): 62–6.
30. FongG H, RossantJ, GertsensteinMet al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376(6535): 66–70.
31. KendallR L, ThomasK A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 1993; 90(22): 10705–9.
32. HelskeS, VuorelaP, CarpenOet al. Expression of vascular endothelial growth factor receptors 1, 2 and 3 in placentas from normal and complicated pregnancies. Mol Hum Reprod 2001; 7(2): 205–10.
33. RajakumarA, MichaelH M, RajakumarP Aet al. Extra-placental expression of vascular endothelial growth factor receptor-1 (Flt-1), and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta 2005; 26(7): 563–73.
34. FerraraN, Carver-MooreK, ChenHet al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380(6573): 439–42.
35. KaluzS, KaluzovaM, StanbridgeE J. Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta 2008; 395(1–2): 6–13.
36. AhmedA, DunkC, AhmadSet al. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen: a review. Placenta 2000; 21(Suppl A): S16–S24.
37. MunautC, LorquetS, PequeuxCet al. Hypoxia is responsible for soluble vascular endothelial growth factor receptor-1 (VEGFR-1) but not for soluble endoglin induction in villous trophoblast. Hum Reprod 2008; 23(6): 1407–15.
38. NishimotoF, SakataM, MinekawaRet al. Metal transcription factor-1 is involved in hypoxia-dependent regulation of placenta growth factor in trophoblast-derived cells. Endocrinology 2009; 150: 1801–8.
39. HunterA, AitkenheadM, CaldwellCet al. Serum levels of vascular endothelial growth factor in preeclamptic and normotensive pregnancy. Hypertension 2000; 36(6): 965–9.
40. LevineR J, MaynardS E, QianCet al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350(7): 672–83.
41. TaylorR N, GrimwoodJ, TaylorR Set al. Longitudinal serum concentrations of placental growth factor: evidence for abnormal placental angiogenesis in pathologic pregnancies. Am J Obstet Gynecol 2003; 188(1): 177–82.
42. JohnsJ, JauniauxE. Placental haematomas in early pregnancy. Br J Hosp Med (Lond) 2007; 68(1): 32–5.
43. Charnock-JonesD S. Soluble flt-1 and the angiopoietins in the development and regulation of placental vasculature. J Anat 2002; 200(6): 607–15.
44. SchiesslB, InnesB A, BulmerJ Net al. Localization of angiogenic growth factors and their receptors in the human placental bed throughout normal human pregnancy. Placenta 2009; 30(1): 79–87.
45. ZhangE G, SmithS K, BakerP Net al. The regulation and localization of angiopoietin-1, -2, and their receptor Tie2 in normal and pathologic human placentae. Mol Med 2001; 7(9): 624–35.
46. GospodarowiczD. Purification of a fibroblast growth factor from bovine pituitary. J Biol Chem 1975; 250(7): 2515–20.
47. ShingY, FolkmanJ, SullivanR, et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984; 223(4642): 1296–9.
48. RibattiD, ConconiM T, NussdorferG G. Nonclassic endogenous novel regulators of angiogenesis. Pharmacol Rev 2007; 59(2): 185–205.
49. FerrianiR A, AhmedA, SharkeyAet al. Colocalization of acidic and fibroblastic growth factor (FGF) in human placenta and the cellular effects of bFGF in trophoblast cell line JEG-3. Growth Factors 1994; 10(4): 259–68.
50. MurakamiM, SimonsM. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 2008; 15(3): 215–20.
51. RudgeJ S, HolashJ, HyltonDet al. Inaugural article: VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A 2007; 104(47): 18363–70.
52. GovindenR, BhoolaK D. Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther 2003; 98(2): 257–65.
53. PepperM S. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 1997; 8(1): 21–43.
54. BowenJ M, ChamleyL, MitchellM Det al. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta 2002; 23(4): 239–56.
55. JonesR L, StoikosC, FindlayJ Ket al. TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction 2006; 132(2): 217–32.
56. BernabeuC, ConleyB A, VaryC P. Novel biochemical pathways of endoglin in vascular cell physiology. J Cell Biochem 2007; 102(6): 1375–88.
57. LevineR J, LamC, QianCet al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355(10): 992–1005.
58. LuftF C. Soluble endoglin (sEng) joins the soluble fms-like tyrosine kinase (sFlt) receptor as a pre-eclampsia molecule. Nephrol Dial Transplant 2006; 21(11): 3052–4.

References

1. FalkowskiP G, KatzM E, MilliganA Jet al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 2005; 309: 2202–4.
2. BurtonG J, HempstockJ, JauniauxE. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online 2003; 6: 84–96.
3. JauniauxE, PostonL, BurtonG J. Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update 2006; 12: 747–55.
4. JauniauxE, CampbellS, VyasS. The use of color Doppler imaging for prenatal diagnosis of umbilical cord anomalies: report of three cases. Am J Obstet Gynecol 1989; 161: 1195–7.
5. JauniauxE, JurkovicD, CampbellS, HustinJ. Doppler ultrasound study of the developing placental circulations: correlation with anatomic findings. Am J Obstet Gynecol 1992; 166: 585–7.
6. JauniauxE, JurkovicD, CampbellS, KurjakA, HustinJ. Investigation of placental circulations by color Doppler ultrasound. Am J Obstet Gynecol 1991; 164: 486–8.
7. JurkovicD, JauniauxE, KurjakAet al. Transvaginal color Doppler assessment of utero-placental circulation in early pregnancy. Obstet Gynecol 1991; 77: 365–9.
8. JauniauxE, JurkovicD, CampbellS. In vivo investigations of anatomy and physiology of early human placental circulations. Ultrasound Obstet Gynecol 1991; 1: 435–45.
9. JauniauxE, ZaidiJ, JurkovicD, CampbellS, HustinJ. Comparison of colour Doppler features and pathologic findings in complicated early pregnancy. Hum Reprod 1994; 9: 243–7.
10. JauniauxE, JurkovicD, GulbisBet al. Biochemical composition of coelomic fluid in early human pregnancy. Obstet Gynecol 1991; 78: 1124–8.
11. JauniauxE, LeesC, JurkovicD, CampbellS, GulbisB. Transfer of inulin across the first trimester human placenta. Am J Obstet Gynecol 1997; 176: 33–6.
12. JauniauxE, GulbisB. Fluid compartments of the embryonic environment. Hum Reprod Update 2000; 6: 268–78.
13. JauniauxE, Cindrova-DaviesT, JohnsTet al. Distribution and transfer pathways of antioxidant molecules inside the first trimester human gestational sac. J Clin Endocrinol Metab 2004; 89: 1452–8.
14. JauniauxE, HempstockJ, TengC, BattagliaF C, BurtonG J. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab 2005; 90: 1171–5.
15. JauniauxE, JohnsJ, GulbisB, Spasic-BoskovicO, BurtonG J. Transfer of folic acid inside the first trimester gestational sac and the effect of maternal smoking. Am J Obstet Gynecol 2007; 197: 58e1–58e6.
16. JauniauxE, PahalG S, GervyC, GulbisB. Blood biochemistry and endocrinology in the human fetus between 11 and 17 weeks of gestation. Reprod Biomed On-line 2000; 1: 38–44.
17. PahalG S, JauniauxE, KinnonC, TrasherA, RodeckC H. Normal development of fetal hematopoiesis between eight and seventeen week’s gestation. Am J Obstet Gynecol 2000; 183: 1029–34.
18. RodeschF, SimonP, DonnerC, JauniauxE. Oxygen measurements in the maternotrophoblastic border during early pregnancy. Obstet Gynecol 1992; 80: 283–5.
19. JauniauxE, WatsonA, OzturkO, QuickD, BurtonG. In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy. Hum Reprod 1999; 14: 2901–4.
20. JauniauxE, WatsonA L, HempstockJet al. Onset of maternal arterial blood flow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol 2000; 57: 2111–22.
21. JauniauxE, WatsonA L, BurtonG J. Evaluation of respiratory gases and acid-base gradients in fetal fluids and uteroplacental tissue between 7 and 16 weeks. Am J Obstet Gynecol 2001; 184: 998–1003.
22. JauniauxE, GulbisB, BurtonG J. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus: a review. Placenta-Trophoblast Res 2003; 24: S86–S93.
23. JauniauxE, HempstockJ, GreenwoldN, BurtonG J. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol 2003; 162: 115–25.
24. HertigA T, RockJ. The implantation and early human development of the human ovum. Am J Obstet Gynecol 1951; 61: 8–14.
25. CarterA M. Placental oxygen consumption. Part I: in vivo studies: a review. Placenta 2000; 21: S31–S7
26. WangY, WalshS W. Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta 1998; 19: 581–6.
27. TuB P, WeissmanJ S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 2004; 164: 341–6
28. BoydJ D, HamiltonW J. The human placenta. Cambridge: Heffer and Sons; 1970.
29. MayhewT M, BurtonG J. Stereology and its impact on our understanding of human placental functional morphology. Microsc Res Tech 1997; 38: 195–205.
30. JauniauxE, BurtonG J, MoscosoG J, HustinJ. Development of the early human placenta: a morphometric study. Placenta 1991; 12: 269–76.
31. WatsonA L, PalmerM E, SkepperJ N, JauniauxE, BurtonG J. Susceptibility of human placental syncytiotrophoblast mitochondria to oxygen-mediated damage in relation to gestational age. J Clin Endocrinol Metabol 1998; 83: 1697–705.
32. WatsonA L, PalmerM E, JauniauxE, BurtonG J. Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age. Placenta 1997; 18: 295–9.
33. WatsonA L, SkepperJ N, JauniauxE, BurtonG J. Changes in the concentration, localisation and activity of catalase within the human placenta during early gestation. Placenta 1998; 19: 27–34.
34. DrogeW. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47–95.
35. FrendoJ L, TherondP, BirdTet al. Overexpression of copper zinc superoxide dismutase impairs human trophoblast cell fusion and differentiation. Endocrinology 2001; 142: 3638–48.
36. JauniauxE, JurkovicD, GulbisBet al. Investigation of the acid-base balance of coelomic and amniotic fluids in early human pregnancy. Am J Obstet Gynecol 1994; 170: 1359–65.
37. GulbisB, JauniauxE. Distribution of lactic dehydrogenase isoenzymes in coelomic fluid and fetal adnexae. Placenta 1996; 17: 367–70.
38. FischerB, KunzelW, KleinsteinJ, GipsH. Oxygen tension in follicular fluid falls with follicle maturation. Eur J Obstet Gynecol Reprod Biol 1992; 43: 39–43.
39. PalisJ. Ontogeny of erythropoiesis. Curr Opin Hematol 2008; 15: 155–61.
40. JonesC P J, JauniauxE. Ultrastucture of the materno-embryonic interface in the first trimester of pregnancy. Micron 1995; 2: 145–73.
41. GulbisB, JauniauxE, JurkovicDet al. Determination of protein pattern in embryonic cavities of early human pregnancies: a model to understand materno-embryonic exchanges. Hum Reprod 1992; 7: 886–9.
42. JauniauxE, GulbisB, JurkovicDet al. Protein and steroid levels in embryonic cavities of early human pregnancy. Hum Reprod 1993; 8: 782–7.
43. JauniauxE, GulbisB, JurkovicDet al. Relationship between protein levels in embryological fluids and maternal serum and yolk sac size during early human pregnancy. Hum Reprod 1994; 9: 161–6.
44. GulbisB, JauniauxE, CottonF, StordeurP. Protein and enzyme pattern in the fluid cavities of the first trimester human gestational sac: relevance to the absorptive role of the secondary yolk sac. Molec Hum Reprod 1998; 4: 857–62.
45. GrayC A, TaylorK M, RamseyW Set al. Endometrial glands are required for preimplantation conceptus elongation and survival. Biol Reprod 2001; 64: 1608–13.
46. BurtonG J, JauniauxE, WatsonA L. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol 1999; 181: 18–24.
47. BurtonG J, HempstockJ, JauniauxE. Nutrition of the human fetus during the first trimester: a review. Placenta-Trophoblast Res 2001; 22: S70–S6.
48. BurtonG J, WatsonA L, HempstockJ, SkepperJ N, JauniauxE. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 2002; 87: 2954–9.
49. HempstockJ, Cindrova-DaviesT, JauniauxE, BurtonG J. Endometrial glands as a source of nutrients, growth factors and cytokines during the first trimester of human pregnancy: a morphological and immunohistochemical study. Reprod Biol Endocrinol 2004; 20:58.
50. MorizakiN, MorizakiJ, HayashiR H, GarfieldR E. A functional and structural study of the innervation of the human uterus. Am J Obstet Gynecol 1989; 160: 218–28.
51. ReillyF D, RussellP T. Neurohistochemical evidence supporting an absence of adrenergic and cholinergic innervation in the human placenta and umbilical cord. Anat Record 1979; 188: 277–86.
52. Charnock-JonesD S, BurtonG J. Placental vascular morphogenesis. Bailliere’s Best Practice Research Clin Obstet Gynaecol 2000; 14: 953–68.
53. HustinJ, JauniauxE. Curing the human embryo – curing the placenta. Human Reprod 1993; 8: 1966–82.
54. ItskovitzJ, LindenbaumE S, BrandesJ M. Arterial anastomosis in the pregnant human uterus. Obstet Gynecol 1980: 55: 67–70.
55. BurchellC. Arterial blood flow in the human intervillous space. Am J Obstet Gynecol 1969; 98: 303–11.
56. PijnenborgR, DixonG, RobertsonW B, BrosensI. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1980; 1: 3–19.
57. PijnenborgR, BlandJ M, RobertsonW B, DixonG, BrosensI. The pattern of interstitial invasion of the myometrium in early human pregnancy. Placenta 1981; 2: 303–16.
58. PijnenborgR, BlandJ M, RobertsonW B, BrosensI. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 1983; 4: 397–414.
59. PijnenborgR, VercruysseL, HanssensM. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 2006; 27: 239–58.
60. HustinJ, SchaapsJ P. Echographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 1987; 157: 162–8.
61. MollW, KunzelW, HerbergerJ. Hemodynamic implications of hemochorial placentation. Eur J Obstet Gynecol Reprod Biol 1975; 5: 67–74.
62. MollW. Structure adaptation and blood flow control in the uterine arterial system after hemochorial placentation. Eur J Obstet Gynecol Reprod Biol 2003; 110: S19–27.
63. SchaapsJ P, TsatsarisV, GiffinFet al. Shunting the intervillous space: new concepts in human uteroplacental vascularization. Am J Obstet Gynecol 2005; 192: 323–32.
64. HempstockJ, JauniauxE, GreenwoldN, BurtonG J. The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol 2003; 34: 1265–75.
65. JauniauxE, GreenwoldN, HempstockJ, BurtonG J. Comparison of ultrasound and Doppler mapping of the intervillous circulation in normal and abnormal early pregnancies. Fertil Steril 2003; 79: 100–6.
66. GreenwoldN, JauniauxE, GulbisBet al. Relationships between maternal serum, endocrinology, placental karyotype and intervillous circulation in early pregnancy failure. Fertil Steril 2003; 79: 1373–9.
67. JauniauxE, BurtonG J. Pathophysiology of histological changes in early pregnancy loss. Placenta 2005; 26: 114–23.