Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: July 2010

Chapter 21 - Angiogenic factors and preeclampsia

from Section 7: - Risk factors, predictors, and future management

Summary

This chapter reviews the role of endometrial and subendometrial blood flow determined by Doppler ultrasound in the prediction of pregnancy during in vitro fertilization (IVF) treatment. Uterine Doppler study may not reflect the actual blood flow to the endometrium as the major compartment of the uterus is the myometrium and there is collateral circulation between uterine and ovarian vessels. Absent endometrial and subendometrial blood flow has been shown to be associated with no pregnancy or a significantly lower pregnancy rate. In combination with a 3D ultrasound, power Doppler provides a unique tool with which to measure the blood flow towards the whole endometrium and the subendometrial region. There was a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintained until the onset of menstruation. Doppler flow study of spiral arteries is not predictive of pregnancy.

Related content

Powered by UNSILO

References

1. RedmanC W, SargentI L. Latest advances in understanding preeclampsia. Science 2005; 308: 1592–4.
2. WHO. World Health Report: Make every mother and child count. Geneva: World Health Organization; 2005.
3. PageE W. The relation between hydatid moles, relative ischemia of the gravid uterus and the placental origin of eclampsia. Am J Obstet Gynecol 1939; 37: 291–3.
4. NorwitzE R, RepkeJ T. Preeclampsia prevention and management. J Soc Gynecol Investig 2000; 7: 21–36.
5. SibaiB, DekkerG, KupfermincM. Pre-eclampsia. Lancet 2005; 365: 785–99.
6. SibaiB. Diagnosis, prevention, and management of eclampsia. Obstet Gynecol 2005; 105: 402–10.
7. AldermanB W, SperlingR S, DalingJ R. An epidemiological study of the immunogenetic aetiology of pre-eclampsia. Br Med J (Clin Res Ed) 1986; 292: 372–4.
8. BhattacharyaS, CampbellD M, ListonW A, BhattacharyaS. Effect of body mass index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health 2007; 7: 168.
9. RomanH, RobillardP Y, HulseyT C, et al. Obstetrical and neonatal outcomes in obese women. West Indian Med J 2007; 56: 421–6.
10. ChesleyL C, AnnittoJ E, CosgroveR A. The familial factor in toxemia of pregnancy. Obstet Gynecol 1968; 32: 303–11.
11. CarrD B, EppleinM, JohnsonC O, EasterlingT R, CritchlowC W. A sister’s risk: family history as a predictor of preeclampsia. Am J Obstet Gynecol 2005; 193: 965–72.
12. EsplinM S, FausettM B, FraserAet al. Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med 2001; 344: 867–72.
13. RobillardP Y, HulseyT C, PerianinJet al. Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet 1994; 344: 973–5.
14. SkjaervenR, WilcoxA J, LieR T. The interval between pregnancies and the risk of preeclampsia. New Engl J Med 2002; 346: 33–8.
15. TrogstadL I, EskildA, MagnusP, SamuelsenS O, NesheimB I. Changing paternity and time since last pregnancy; the impact on pre-eclampsia risk. A study of 547 238 women with and without previous pre-eclampsia. Int J Epidemiol 2001; 30: 1317–22.
16. WangJ X, KnottnerusA M, SchuitGet al. Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet 2002; 359: 673–4.
17. DemirR, KaufmannP, CastellucciM, ErbengiT, KotowskiA. Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat (Basel) 1989; 136: 190–203.
18. SevalY, KorgunE T, DemirR. Hofbauer cells in early human placenta: possible implications in vasculogenesis and angiogenesis. Placenta 2007; 28: 841–5.
19. KhanS, KatabuchiH, ArakiM, NishimuraR, OkamuraH. Human villous macrophage-conditioned media enhance human trophoblast growth and differentiation in vitro. Biol Reprod 2000; 62: 1075–83.
20. ZhouY, FisherS J, JanatpourMet al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate: a strategy for successful endovascular invasion? J Clin Invest 1997; 99: 2139–51.
21. BrosensI A, RobertsonW B, DixonH G. The role of spiral arteries in the pathogenesis of pre-eclampsia. Obstet Gynecol Annu 1972; 1: 177–91.
22. GerretsenG, HuisjesH J, ElemaJ D. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol 1981; 88: 876–81.
23. MeekinsJ W, PijnenborgR, HanssensM, McFadyenI R, van AssheA. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol 1994; 101: 669–74.
24. ZhouY, DamskyC H, FisherS J. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype: one cause of defective endovascular invasion in this syndrome? J Clin Invest 1997; 99: 2152–64.
25. BallE, RobsonS C, AyisS, LyallF, BulmerJ N. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion. J Pathol 2006; 208: 528–34.
26. BallE, BulmerJ N, AyisS, LyallF, RobsonS C. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol 2006; 208: 535–42.
27. ManyA, HubelC A, FisherS J, RobertsJ M, ZhouY. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol 2000; 156: 321–31.
28. VaughanJ E, WalshS W. Oxidative stress reproduces placental abnormalities of preeclampsia. Hypertens Preg 2002; 21: 205–23.
29. WalshS W. Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia. Semin Reprod Endocrinol 1998; 16: 93–104.
30. RedmanC W, SacksG P, SargentI L. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999; 180: 499–506.
31. SacksG P, StudenaK, SargentK, RedmanC W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179: 80–6.
32. AlaY, PalluyO, FaveroJet al. Hypoxia/reoxygenation stimulates endothelial cells to promote interleukin-1 and interleukin-6 production: effects of free radical scavengers. Agents Actions 1992; 37: 134–9.
33. KupfermincM J, PeacemanA M, AderkaD, WallachD, SocolM L. Soluble tumor necrosis factor receptors and interleukin-6 levels in patients with severe preeclampsia. Obstet Gynecol 1996; 88: 420–7.
34. KupfermincM J, PeacemanA M, WigtonT R, RehnbergK A, SocolM L. Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol 1994; 170: 1752–7; discussion 1757–9.
35. SharmaA, SatyamA, SharmaJ B. Leptin, IL-10 and inflammatory markers (TNF-alpha, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol 2007; 58: 21–30.
36. SoleymanlouN, JurisicaI, NevoOet al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab 2005; 90: 4299–308.
37. ZamudioS, WuY, IettaFet al. Human placental hypoxia-inducible factor-1alpha expression correlates with clinical outcomes in chronic hypoxia in vivo. Am J Pathol 2007; 170: 2171–9.
38. NevoO, SoleymanlouN, WuYet al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1085–93.
39. RajakumarA, BrandonH M, DaftaryA, NessR, ConradK P. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta 2004; 25: 763–9.
40. CaniggiaI, WinterJ L. Adriana and Luisa Castellucci Award lecture 2001. Hypoxia inducible factor-1: oxygen regulation of trophoblast differentiation in normal and pre-eclamptic pregnancies – a review. Placenta 2002; 23(Suppl A): S47–57.
41. NishiH, NakadaT, HokamuraMet al. Hypoxia-inducible factor-1 transactivates transforming growth factor-beta3 in trophoblast. Endocrinology 2004; 145: 4113–8.
42. ShibuyaM, Claesson-WelshL. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006; 312: 549–60.
43. CarmelietP, FerreiraV, BreierGet al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–9.
44. FerraraN, Carver-MooreK, ChenHet al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–42.
45. KandaM, NomotoS, NishikawaYet al. Correlations of the expression of vascular endothelial growth factor B and its isoforms in hepatocellular carcinoma with clinico-pathological parameters. J Surg Oncol 2008; 98: 190–6.
46. McCollB K, PaavonenK, KarnezisTet al. Proprotein convertases promote processing of VEGF-D, a critical step for binding the angiogenic receptor VEGFR-2. Faseb J 2007; 21: 1088–98.
47. LyttleD J, FraserK M, FlemingS B, MercerA A, RobinsonA J. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 1994; 68: 84–92.
48. KibaA, SagaraH, HaraT, ShibuyaM. VEGFR-2-specific ligand VEGF-E induces non-edematous hyper-vascularization in mice. Biochem Biophys Res Comm 2003; 301: 371–7.
49. MaglioneD, GuerrieroV, VigliettoG, Delli-BoviP, PersicoM G. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A 1991; 88: 9267–71.
50. AutieroM, WaltenbergerJ, CommuniDet al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9: 936–43.
51. CarmelietP, MoonsL, LuttunAet al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7: 575–83.
52. AhmedA, DunkC, AhmadS, KhaliqA. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen – a review. Placenta 2000; 21(Suppl A): S16–24.
53. VuorelaP, HatvaE, LymboussakiAet al. Expression of vascular endothelial growth factor and placenta growth factor in human placenta. Biol Reprod 1997; 56: 489–94.
54. HannaJ, Goldman-WohlD, HamaniYet al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12: 1065–74.
55. TayadeC, HilchieD, HeHet al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol 2007; 178: 4267–75.
56. AlitaloK, CarmelietP. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002; 1: 219–27.
57. VeikkolaT, JussilaL, MakinenTet al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. Embo J 2001; 20: 1223–31.
58. BarleonB, SozzaniS, ZhouDet al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87: 3336–43.
59. ClaussM, WeichH, BreierGet al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities: implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996; 271: 17629–34.
60. SawanoA, IwaiS, SakuraiYet al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 2001; 97: 785–91.
61. FongG, RassantJ, GertensteinM M B. Role of Flt-1 receptor tyrosine kinase in regulation of assembly of vascular endothelium. Nature 1995; 376: 66–7.
62. ShalabyF, RossantJ, YamaguchiT Pet al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62–6.
63. HelskeS, VuorelaP, CarpenOet al. Expression of vascular endothelial growth factor receptors 1, 2 and 3 in placentae from normal and complicated pregnancies. Mol Hum Reprod 2001; 7: 205–10.
64. VenkateshaS, ToporsianM, LamCet al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12: 642–9.
65. BarbaraN P, WranaJ L, LetarteM. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 1999; 274: 584–94.
66. CaniggiaI, Grisaru-GravnoskyS, KuliszewskyM, PostM, LyeS J. Inhibition of TGF-beta 3 restores the invasive capability of extravillous trophoblasts in preeclamptic pregnancies. J Clin Invest 1999; 103: 1641–50.
67. JonesR L, StoikosC, FindlayJ K, SalamonsenL A. TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction 2006; 132: 217–32.
68. McAllisterK A, GroggK M, JohnsonD Wet al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 1994; 8: 345–51.
69. BourdeauA, DumontD J, LetarteM. A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 1999; 104: 1343–51.
70. JerkicM, Rivas-ElenaJ V, PrietoMet al. Endoglin regulates nitric oxide-dependent vasodilatation. Faseb J 2004; 18: 609–11.
71. St-JacquesS, ForteM, LyeS J, LetarteM. Localization of endoglin, a transforming growth factor-beta binding protein, and of CD44 and integrins in placenta during the first trimester of pregnancy. Biol Reprod 1994; 51: 405–13.
72. MaynardS, EpsteinF H, KarumanchiS A.Preeclampsia and angiogenic imbalance. Ann Rev Med 2008; 59: 61–78.
73. ClarkD E, SmithS K, HeYet al. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod 1998; 59: 1540–8.
74. EsserS, WolburgK, WolburgHet al. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 1998; 140: 947–59.
75. LevineR J, KarumanchiS A. Circulating angiogenic factors in preeclampsia. Clin Obst Gynecol 2005; 48: 372–86.
76. MaynardS E, MinJ Y, MerchanJet al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–58.
77. SugimotoH, HamanoY, CharytanDet al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 2003; 278: 12605–8.
78. EreminaV, SoodM, HaighJet al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111: 707–716.
79. EreminaV, JeffersonJ A, KowalewskaJet al. VEGF inhibition and renal thrombotic microangiopathy. New Engl J Med 2008; 358: 1129–36.
80. ZhuX, WuS, DahutW L, ParikhC R. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 2007; 49: 186–93.
81. PolliottiB M, FryA G, SallerD Net al. Second-trimester maternal serum placental growth factor and vascular endothelial growth factor for predicting severe, early-onset preeclampsia. Obstet Gynecol 2003; 101: 1266–74.
82. ThomasC P, AndrewsJ I, LiuK Z. Intronic polyadenylation signal sequences and alternate splicing generate human soluble Flt1 variants and regulate the abundance of soluble Flt1 in the placenta. Faseb J 2007; 21: 3885–95.
83. SelaS, ItinA, Natanson-YaronSet al. A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ Res 2008; 102: 1566–74.
84. MaharajA S, WalsheT E, Saint-GeniezMet al. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 2008; 205: 491–501.
85. ShoreV H, WangT H, WangC Let al. Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta 1997; 18: 657–65.
86. NagamatsuT, FujiiT, KusumiMet al. Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology 2004; 145: 4838–45.
87. GuY, LewisD F, WangY. Placental productions and expressions of soluble endoglin, soluble fms-like tyrosine kinase receptor-1, and placental growth factor in normal and preeclamptic pregnancies. J Clin Endocrinol Metab 2008; 93: 260–6.
88. MakrisA, ThorntonC, ThompsonJet al. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int 2007; 71: 977–84.
89. GilbertJ S, BabcockS A, GrangerJ P. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension 2007; 50: 1142–7.
90. ParikhS M, KarumanchiS A. Putting pressure on pre-eclampsia. Nat Med 2008; 14: 810–12.
91. YinonY, NevoO, XuJet al. Severe intrauterine growth restriction pregnancies have increased placental endoglin levels: hypoxic regulation via transforming growth factor-beta 3. Am J Pathol 2008; 172: 77–85.
92. JeyabalanA, McGonigalS, GilmourC, HubelC A, RajakumarA. Circulating and placental endoglin concentrations in pregnancies complicated by intrauterine growth restriction and preeclampsia. Placenta 2008; 29: 555–63.
93. NevoO, ManyA, XuJet al. Placental expression of soluble fms-like tyrosine kinase 1 is increased in singletons and twin pregnancies with intrauterine growth restriction. J Clin Endocrinol Metab 2008; 93: 285–92.
94. RajakumarA, JeyabalanA, MarkovicNet al. Placental HIF-1 alpha, HIF-2 alpha, membrane and soluble VEGF receptor-1 proteins are not increased in normotensive pregnancies complicated by late-onset intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2007; 293: R766–74.
95. LevineR J, MaynardS E, QianCet al. Circulating angiogenic factors and the risk of preeclampsia. New Engl J Med 2004; 350: 672–83.
96. KogaK, OsugaY, YoshinoOet al. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab 2003; 88: 2348–51.
97. RanaS, KarumanchiS A, LevineR Jet al. Sequential changes in antiangiogenic factors in early pregnancy and risk of developing preeclampsia. Hypertension 2007; 50: 137–42.
98. VattenL J, EskildA, NilsenT Iet al. Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia. Am J Obstet Gynecol 2007; 196:239. e231–236.
99. StepanH, UnversuchtA, WesselN, FaberR. Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion. Hypertension 2007; 49: 818–24.
100. RomeroR, NienJ K, EspinozaJet al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med 2008; 21: 9–23.
101. Moore SimasT A, CrawfordS L, SolitroM Jet al. Angiogenic factors for the prediction of preeclampsia in high-risk women. Am J Obstet Gynecol 2007; 197: e241–8.
102. StepanH, GeipelA, SchwarzFet al. Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion. Am J Obstet Gynecol 2008; 198: e171–6.
103. WikstromA K, LarssonA, ErikssonU Jet al. Placental growth factor and soluble FMS-like tyrosine kinase-1 in early-onset and late-onset preeclampsia. Obstet Gynecol 2007; 109: 1368–74.
104. LevineR J, ThadhaniR, QianCet al. Urinary placental growth factor and risk of preeclampsia. Jama 2005; 293: 77–85.
105. PurwosunuY, SekizawaA, FarinaAet al. Evaluation of physiological alterations of the placenta through analysis of cell-free messenger ribonucleic acid concentrations of angiogenic factors. Am J Obstet Gynecol 2008; 198: e121–7.
106. SmithG C, PellJ P, WalshD. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129 290 births. Lancet 2001; 357: 2002–6.
107. WilsonB J, WatsonM S, PrescottG Jet al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ 2003; 326: 845.
108. VikseB E, IrgensL M, BostadL, IversenB M. Adverse perinatal outcome and later kidney biopsy in the mother. J Am Soc Nephrol 2006; 17: 837–45.
109. VikseB E, IrgensL M, LeivestadT, SkjaervenR, IversenB M. Preeclampsia and the risk of end-stage renal disease. New Engl J Med 2008; 359: 800–9.
110. BarJ, KaplanB, WittenbergCet al. Microalbuminuria after pregnancy complicated by pre-eclampsia. Nephrol Dial Transplant 1999; 14: 1129–32.
111. PoutaA, HartikainenA L, SovioUet al. Manifestations of metabolic syndrome after hypertensive pregnancy. Hypertension 2004; 43: 825–31.
112. ForestJ C, GirouardJ, MasseJet al. Early occurrence of metabolic syndrome after hypertension in pregnancy. Obstet Gynecol 2005; 105: 1373–80.
113. WolfM, HubelC A, LamCet al. Preeclampsia and future cardiovascular disease: potential role of altered angiogenesis and insulin resistance. J Clin Endocrinol Metab 2004; 89: 6239–43.
114. BarkerD J, GluckmanP D, GodfreyK Met al. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993; 341: 938–41.
115. HalesC N, BarkerD J, ClarkP Met al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303: 1019–22.
116. KlebanoffM A, SecherN J, MednickB R, SchulsingerC. Maternal size at birth and the development of hypertension during pregnancy: a test of the Barker hypothesis. Arch Intern Med 1999; 159: 1607–12.
117. LiZ, ZhangY, Ying MaJet al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension 2007; 50: 686–92.
118. KarumanchiS A, EpsteinF H. Placental ischemia and soluble fms-like tyrosine kinase 1: cause or consequence of preeclampsia? Kidney Int 2007; 71: 959–61.
119. ChaiworapongsaT, RomeroR, KimY Met al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med 2005; 17: 3–18.