Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:54:17.223Z Has data issue: false hasContentIssue false

10 - UV-absorbing ‘pigments’: mycosporine-like amino acids

Published online by Cambridge University Press:  05 March 2012

Suzanne Roy
Affiliation:
Université du Québec à Rimouski, Canada
Carole A. Llewellyn
Affiliation:
Plymouth Marine Laboratory
Einar Skarstad Egeland
Affiliation:
University of Nordland, Norway
Geir Johnsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

Description and role of MAAs

It is now generally believed that natural ultraviolet-A radiation (UV-A, 315–400 nm) and ultraviolet-B radiation (UV-B, 280–315 nm) are strong environmental factors affecting both productivity and community structure in marine and terrestrial ecosystems (de Mora et al., 2000). Reduction of the stratospheric ozone layer, which has caused an increase in the UV-B flux to the Earth's surface in recent years (Farman et al., 1985), could result in increased levels of UV-induced damage for most living organisms (Vincent and Neale, 2000), producing a great impact on the photosynthetic carbon fixation by plants and, consequently, on the global climate change (UNEP, 2006). At the beginning of the evolution of life on Earth, UV-B flux rates clearly exceeded the present values (Cockell and Horneck, 2001) resulting in the evolution of several protection strategies to counteract the negative effects of UV radiation (Roy, 2000). One of the adaptations whereby phytoplankton can reduce UV-induced damage is the synthesis of compounds that can absorb the damaging wavelengths and dissipate the absorbed energy without generating phototoxic reactive intermediates. A variety of such compounds have been found in aquatic and terrestrial plants (Rozema et al., 2002).

As early as 1938 there were observations of UV-absorbing compounds in marine algae (Kalle, 1938; referenced in Sivalingam et al., 1974). This was followed in 1969 by reports of UV-absorbing substances (named S-320) in water extracts from several species of corals and a cyanobacterium (most likely Trichodesmium) from the Great Barrier Reef (Shibata, 1969). Mycosporine-like amino acids (MAAs) from marine organisms were first isolated and characterized by Hirata and co-workers (Hirata et al., 1979). They isolated and characterized mycosporine-glycine from the tropical zoanthid Palythoa tuberculosa (Ito and Hirata, 1977), a compound previously isolated from mycelia of sporulating fungi (Favre-Bonvin et al., 1976), and then described several related imine derivatives of mycosporines (Hirata et al., 1979). Since then, more than 20 closely related MAA compounds have been isolated and characterized from several plants and marine animals (Figure 10.1 and Table 10.1). Wide ranging studies indicate that these compounds occur in virtually all taxa of marine and freshwater cyanobacteria and algae, in invertebrate–microbial symbioses and in metazoans (Karentz et al., 1991; Gröniger et al., 2000; Karentz, 2001).

Type
Chapter
Information
Phytoplankton Pigments
Characterization, Chemotaxonomy and Applications in Oceanography
, pp. 412 - 442
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arpin, N.Bouillant, M. L. 1981 Light and mycosporinesThe Fungal Spore, Morphogenetic ControlsTuriang Hohl, H. R.LondonAcademic Press159Google Scholar
Banaszak, A. T.Trench, R. K. 1995 Effects of ultraviolet (UV) radiation on microalgal-invertebrate symbiosis. II. The synthesis of mycosporine-like amino acids in response to exposure to UV in and J. Exp. Mar. Biol. Ecol 194 233CrossRefGoogle Scholar
Banaszak, A. T.LaJeunesse, T. C.Trench, R. K. 2000 The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellatesJ. Exp. Mar. Biol. Ecol 249 219CrossRefGoogle Scholar
Banaszak, A. T.Santos, M. G.LaJeunesse, T. C.Lesser, M. P. 2006 The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican CaribbeanJ. Exp. Mar. Biol. Ecol 337 131CrossRefGoogle Scholar
Bandaranayake, W. M. 1998 Mycosporines. Are they nature's sunscreens?Nat. Prod. Rep 15 159CrossRefGoogle ScholarPubMed
Bandaranayake, W. M.Bemis, J. E.Bourne, D. J. 1996 Ultraviolet absorbing pigments from the marine sponge : isolation and structure of a new mycosporineComp. Biochem. Physiol 115C 281Google Scholar
Bidigare, R. R.Iriarte, J. L.Kang, S. -H.Karentz, D.Ondrusek, M. E.Fryxell, G. A. 1996 Phytoplankton: quantitative and qualitative assessmentsFoundations for Ecological Research West of the Antarctic PeninsulaRoss, R. M.Hofmann, E. E.Quentin, L. B.Washington: AGU173CrossRefGoogle Scholar
Callone, A. I.Carignan, M. O.Montoya, N. G.Carreto, J. I. 2006 Biotransformation of mycosporine-like amino acids (MAAs) in the toxic dinoflagellate J. Photochem. Photobiol. B: Biol 84 204CrossRefGoogle ScholarPubMed
Cardozo, K. H. M.Carvalho, V. M.Pinto, E.Colepicolo, P. 2006 Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometryRap. Comm. Mass. Spec 20 253CrossRefGoogle ScholarPubMed
Carignan, M. O.Montoya, N. G.Carreto, J. I. 2002 Long-term effects of ultraviolet radiation on the composition of pigment and mycosporine-like amino acids (MAAs)Aquaculture, Environment and Marine PhytoplanktonArzul, G.Brest: IFREMER191Google Scholar
Carignan, M. O.Cardozo, K. H. M.Oliveira-Silva, D.Colepicolo, P.Carreto, J. I. 2009 Palythine-threonine, a major novel mycosporine-like amino acid (MAA) isolated from the hermatypic coral J. Photochem. Photobiol B: Biol 94 191CrossRefGoogle Scholar
Carreto, J. I.De Marco, S.Lutz, V. A. 1989 UV-absorbing pigments in the dinoflagellates and : Effects of light intensityRed Tides: Biology, Environmental Science and ToxicologyOkaichi, T.Anderson, D. M.Nemoto, T.New YorkElsevier37Google Scholar
Carreto, J. I.Carignan, M. O.Daleo, G.De Marco, S. G. 1990 Occurrence of mycosporine-like amino acids in the red-tide dinoflagellate : UV photoprotective compounds?J. Plankton Res 12 909CrossRefGoogle Scholar
Carreto, J. I.Lutz, V. A.De Marco, S. G.Carignan, M. O. 1990 Fluence and wavelength dependence of mycosporine-like amino acid synthesis in the dinoflagellate Toxic Marine PhytoplanktonGraneli, E.Edler, L.Anderson, D. M.New YorkElsevier275Google Scholar
Carreto, J. I.Carignan, M. O.Montoya, N. G. 2001 Comparative studies on mycosporine-like amino acids, paralytic shellfish toxins and, pigment profiles of the toxic dinoflagellates , and Mar. Ecol. Prog. Ser 223 49CrossRefGoogle Scholar
Carreto, J. I.Carignan, M. O.Montoya, N. G. 2002 Short-term effects of ultraviolet radiation on the dinoflagellate . Pigment bleaching and MAAs synthesis inhibitionAquaculture, Environment and Marine PhytoplanktonArzul, G.Brest: IFREMER173Google Scholar
Carreto, J. I.Carignan, M. O.Montoya, N. G. 2005 A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organismsMar. Biol 146 237CrossRefGoogle Scholar
Carroll, A. K.Shick, J. M. 1996 Dietary accumulation of mycosporine-like amino acids (MAAs) by the green sea urchin ()Mar. Biol 124 561CrossRefGoogle Scholar
Castenholz, R. W.Garcia-Pichel, F. 2000 Cyanobacterial responses to UV-radiationThe Ecology of Cyanobacteria: their Diversity in Time and SpaceWhitton, B. A.Potts, M.DordrechtKluwer591Google Scholar
Cockell, C. S.Horneck, G. 2001 The history of the UV radiation climate on earth–Theoretical and space-based observationsPhotochem. Photobiol 73 4472.0.CO;2>CrossRefGoogle ScholarPubMed
Conde, F. R.Churio, M. S.Previtali, C. M. 2000 The photoprotector mechanism of mycosporine-like amino acids. Excited state properties and photostability of porphyra-334 in aqueous solutionJ. Photochem. Photobiol. B: Biol 56 139CrossRefGoogle ScholarPubMed
Conde, F. R.Carignan, M. O.Churio, M. S.Carreto, J. I. 2003 photoisomerization of palythene and usujirene. Implications on the in vivo transformation of mycosporine-like amino acidsPhotochem. Photobiol 77 1462.0.CO;2>CrossRefGoogle ScholarPubMed
Conde, F. R.Churio, M. S.Previtali, C. M. 2004 The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solutionPhotochem. Photobiol. Sci 3 960CrossRefGoogle ScholarPubMed
De Mora, S.Demers, S.Vernet, M. 2000 The Effects of UV Radiation in the Marine EnvironmentCambridgeCambridge University PressCrossRefGoogle Scholar
Dionisio-Sese, M. L.Ishikura, M.Maruyama, T.Miyachi, S. 1997 UV-absorbing substances in the tunic of a colonial ascidian protect its symbiont, sp., from damage by UV-B radiationMar. Biol 128 455CrossRefGoogle Scholar
Dunlap, W. C.Chalker, B. E. 1986 Identification and quantification of near-UV absorbing compounds (S-320) in a hermatypic scleractinianCoral Reefs 5 1CrossRefGoogle Scholar
Dunlap, W. C.Shick, J. M. 1998 Ultraviolet radiation-absorbing mycosporine-like aminoacids in coral reef organisms: a biochemical and environmental perspectiveJ. Phycol 34 418CrossRefGoogle Scholar
Dunlap, W. C.Yamamoto, Y. 1995 Small-molecule antioxidants in marine organisms: Antioxidant activity of mycosporine-glycineComp. Biochem. Physiol 112 105CrossRefGoogle Scholar
Farman, J. C.Gardiner, B. G.Shanklin, J. D. 1985 Large losses of total ozone in Antarctica reveals seasonal ClOx/NOx interactionsNature 315 207CrossRefGoogle Scholar
Favre-Bonvin, J.Arpin, N.Brevard, C. 1976 Structure de la mycosporine (P-310)Can. J. Chem 54 1105CrossRefGoogle Scholar
Ferroni, L.Klisch, M.Pancaldi, S.Häder, D. 2010 Complementary UV-absorption of mycosporine-like amino acids and scytonemin is responsible for UV-insensitivity of photosynthesis in Mar. Drugs 8 106CrossRefGoogle Scholar
Frame, E. R. 2004 Mycosporine-like Amino Acids (MAAs) in Bloom Forming Phytoplankton: the Influence of Nitrogen, Ultraviolet Radiation and Species CompositionUniversity of CaliforniaSan Diego, USAGoogle Scholar
Franklin, L.Kräbs, G.Kuhlenkamp, R. 2001 Blue light and UV-A radiation control the synthesis of mycosporine-like amino acids in (Florideophyceae)J. Phycol 37 257CrossRefGoogle Scholar
Gröniger, A.Sinha, R. P.Klish, M.Häder, D. -P. 2000 Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae – a databaseJ. Photochem. Photobiol. B: Biol 58 115CrossRefGoogle ScholarPubMed
Hannach, G.Sigleo, A. C. 1998 Photoinduction of UV-absorbing compounds in six species of marine phytoplanktonMar. Ecol. Prog. Ser 174 207CrossRefGoogle Scholar
Helbling, E. W.Chalker, B. E.Dunlap, W. C.Holm-Hansen, O.Villafañe, , V. E 1996 Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiationJ. Exp. Mar. Biol. Ecol 204 85CrossRefGoogle Scholar
Hernando, M.Carreto, J. I.Carignan, M. O.Ferreyra, G. A.Gross, C. 2002 Effects of solar radiation on growth and mycosporine-like amino acids content in sp., an Antarctic diatomPolar Biol 25 12Google Scholar
Hirata, Y.Uemura, D.Ueda, K.Takano, S. 1979 Several compounds from (Coelenterata)Pure Appl. Chem 51 1875CrossRefGoogle Scholar
Hoyer, K.Karsten, U.Wiencke, C. 2002 Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditionsMar. Biol 141 619Google Scholar
Ito, S.Hirata, Y. 1977 Isolation and structure of a mycosporine from the zoanthidian Tetrahedron Lett 28 2429CrossRefGoogle Scholar
Jeffrey, S. W.MacTavish, H. S.Dunlap, W. C.Vesk, M.Groenewould, K. 1999 Occurrence of UVA and UVB-absorbing compounds in 152 species (206 strains) of marine microalgaeMar. Ecol. Prog. Ser 189 35CrossRefGoogle Scholar
Kahru, M.Mitchell, B. G. 1998 Spectral reflectance and absorption of a massive red tide off southern CaliforniaJ. Geophys. Res 103 601CrossRefGoogle Scholar
Karentz, D. 2001 Chemical defences of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytoneminMarine Chemical EcologyMc-Clintock, J. B.Baker, J.Boca RatonCRC Press481CrossRefGoogle Scholar
Karentz, D.Mc Euen, F. S.Land, M. V.Dunlap, W. C. 1991 Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposureMar. Biol 108 157CrossRefGoogle Scholar
Karsten, U.Bischof, K.Hanelt, D.Tüg, H.Wienke, C. 1999 The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic macroalgae (Rhodophyta)Physiol. Plant 105 58CrossRefGoogle Scholar
Klisch, M.Häder, D. -P. 2002 Wavelength dependence of mycosporine-like amino acid synthesis in J. Photochem. Photobiol. B: Biol 66 60CrossRefGoogle ScholarPubMed
Klisch, M.Sinha, R. P.Richter, P. E.Häder, D. -P. 2001 Mycosporine-like amino acids (MAAs) protect against UV damage in KofoidJ. Plant. Physiol 158 1449CrossRefGoogle Scholar
Kobayashi, J.Nakamura, H.Hirata, Y. 1981 Isolation and structure of a UV-absorbing substance from the ascidian Tetrahedron Lett 22 3001CrossRefGoogle Scholar
Kräbs, G.Watanabe, M.Wiencke, C. 2004 A monochromatic action spectrum for the photoinduction of the UV-absorbing mycosporine-like amino acid shinorine in the red alga Photochem. Photobiol 79 515CrossRefGoogle ScholarPubMed
Laurion, I.Blouin, F.Roy, S. 2003 The quantitative filter technique for measuring phytoplankton absorption: interference by MAAs in the UV wavebandLimnol. Oceanogr. Methods 1 1CrossRefGoogle Scholar
Laurion, I.Blouin, F.Roy, S. 2004 Packaging of mycosporine-like amino acids in dinoflagellatesMar. Ecol. Prog. Ser 279 297CrossRefGoogle Scholar
Laurion, I.Roy, S. 2009 Growth and photoprotection in three dinoflagellates (including two strains of ) and one diatom exposed to four weeks of natural and enhanced ultraviolet-B radiationJ. Phycol 45 16CrossRefGoogle ScholarPubMed
Lesser, M. P. 1996 Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellatesLimnol. Oceanogr 41 271CrossRefGoogle Scholar
Lesser, M. P. 1996 Acclimation of phytoplankton to UV-B radiation: Oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Mar. Ecol. Prog. Ser 132 287CrossRefGoogle Scholar
Lesser, M. P. 2000 Depth-dependent photoacclimatization to solar ultraviolet radiation in the Caribbean coral Mar. Ecol. Prog. Ser 192 137CrossRefGoogle Scholar
Litchman, E.Neale, P. J.Banaszak, A. T. 2002 Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: Photoprotection and repairLimnol. Oceanogr 47 86CrossRefGoogle Scholar
Llewellyn, C. A.Harbour, D. S. 2003 A temporal study of mycosporine-like amino acids in surface water phytoplankton from the English Channel and correlation with solar irradiationJ. Mar. Biol. Ass. U.K 83 1CrossRefGoogle Scholar
Mantoura, R. F. C.Repeta, D. J. 1997 Calibration methods for HPLCPhytoplankton Pigments in Oceanography: Guidelines to Modern MethodsJeffrey, S. W.Mantoura, R. F. C.Wright, S. W.ParisUNESCO Publishing407Google Scholar
Mantoura, R. F. C.Wright, S. W.Jeffrey, S. W.Barlow, R. G.Cummings, D. E. 1997 Filtration and storage of pigments from microalgaePhytoplankton Pigments in Oceanography: Guidelines to Modern MethodsJeffrey, S. W.Mantoura, R. F. C.Wright, S. W.ParisUNESCO Publishing283Google Scholar
Marshall, J. A.Newman, S. 2002 Differences in photoprotective pigment production between Japanese and Australian strains of (Raphidophyceae)J. Exp. Mar. Biol. Ecol 272 13CrossRefGoogle Scholar
Moeller, R. E.Gilroy, S.Williamson, C. E.Grad, G.Sommaruga, R. 2005 Dietary acquisition of photoprotective compounds (mycosporine-like amino acids, carotenoids) and acclimation to ultraviolet radiation in a freshwater copepodLimnol. Oceanogr 50 427CrossRefGoogle Scholar
Moisan, T. A.Mitchell, B. G. 2001 UV absorption by mycosporine-like amino acids in Karsten induced by photosynthetically available radiationMar. Biol 138 217CrossRefGoogle Scholar
Morel, A.Gentili, B.Claustre, H.Babin, M.Bricaud, A.Ras, J.Tièche, F. 2007 Optical properties of the ‘clearest’ natural watersLimnol. Oceanogr 52 217CrossRefGoogle Scholar
Morrison, J. R.Nelson, N. B. 2004 Seasonal study of phytoplankton UV absorption at the Bermuda Atlantic Time-series Study (BATS) siteLimnol. Oceanogr 49 215CrossRefGoogle Scholar
Nakamura, H.Kobayashi, J.Hirata, Y. 1981 Isolation and structure of a 330 nm UV-absorbing substance, asterina-330 from the starfish Chem. Lett. Jpn 10 1413CrossRefGoogle Scholar
Nakamura, H.Kobayashi, J.Hirata, Y. 1982 Separation of mycosporine-like amino acids in marine organisms using reversed-phase high-performance liquid chromatographyJ. Chromatogr 250 113CrossRefGoogle Scholar
Neale, P. J.Banaszak, A. T.Jarriel, C. R. 1998 Ultraviolet sunscreens in (Dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesisJ. Phycol 34 928CrossRefGoogle Scholar
Newman, S. J.Dunlap, W. C.Nicol, S.Ritz, D. 2000 Antarctic krill () acquire a UV-absorbing mycosporine-like amino acid from dietary algaeJ. Exp. Mar. Biol. Ecol 255 93CrossRefGoogle ScholarPubMed
Oren, A. 1997 Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteriaGeomicrobiol, J 14 231CrossRefGoogle Scholar
Portwich, A.Garcia-Pichel, F. 1999 Ultraviolet and osmotic stress induce and regulate the synthesis of mycosporines in the cyanobacterium PCC 6912Arch. Microbiol 172 187CrossRefGoogle ScholarPubMed
Portwich, A.Garcia-Pichel, F. 2000 A novel prokaryotic UV-B photoreceptor in the cyanobacterium PCC 6912Photochem. Photobiol 71 4932.0.CO;2>CrossRefGoogle Scholar
Portwich, A.Garcia-Pichel, F. 2003 Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium sp. strain PCC 6912Phycologia 42 384CrossRefGoogle Scholar
Riegger, L.Robinson, D. 1997 Photoinduction of UV-absorbing compounds in Antarctic diatoms and Mar. Ecol. Prog. Ser 160 13CrossRefGoogle Scholar
Roy, S. 2000 Strategies for the minimisation of UV-induced damageThe Effects of UV Radiation in the Marine Environmentde Mora, S.Demers, S.Vernet, M.CambridgeCambridge University Press177CrossRefGoogle Scholar
Rozema, J.Björn, L. O.Bornman, J. F.Gaberščik, A.Häder, D. -P.Trošt, T.Germ, M.Klisch, M.Gröniger, A.Sinha, R. P.Lebert, M.He, Y. -Y.Buffoni-Hall, R.de Bakker, N. V. J.van de Staaij, J.Meijkamp, B. B. 2002 The role of UV-B radiation in aquatic and terrestrial ecosystems-an experimental and functional analysis of the evolution of UV-absorbing compoundsJ. Photochem. Photobiol B: Biol 66 2CrossRefGoogle ScholarPubMed
Sekikawa, I.Kubota, C.Hiraoki, T.Tsujino, I. 1986 Isolation and structure of a 357 nm UV absorbing substance, usujirene, from the red alga (L.) O. KuntzeJpn. J. Phycol 34 185Google Scholar
Shibata, K. 1969 Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier ReefPlant Cell Physiol 10 325Google Scholar
Shick, J. M. 2004 The continuity and intensity of ultraviolet irradiation affect the kinetics of biosynthesis, accumulation, and conversion of mycosporine-like amino acids (MAAs) in the coral Limnol. Oceanogr 49 442CrossRefGoogle Scholar
Shick, J. M.Dunlap, W. C. 2002 Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organismsAnn. Rev. Physiol 64 223CrossRefGoogle Scholar
Shick, J. M.Romaine-Lioud, S.Ferrier-Pagès, C.Gattuso, J. P. 1999 Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral despite decreases in its population of symbiotic dinoflagellatesLimnol. Oceanogr 44 1667CrossRefGoogle Scholar
Shick, J. M.Dunlap, W. C.Pearse, J. S.Pearse, A. V. 2002 Mycosporine-like amino acid content in four species of sea anemones in the genus reflects phylogenetic but not environmental or symbiotic relationshipsBiol. Bull 203 315CrossRefGoogle ScholarPubMed
Sinha, R. P.Klisch, M.Gröninger, A.Häder, D. -P. 1998 Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgaeJ. Photochem. Photobiol. B: Biol 47 83CrossRefGoogle Scholar
Sinha, R. P.Klisch, M.Helbling, E. W.Häder, D. -P. 2001 Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiationJ. Photochem. Photobiol. B: Biol 60 129CrossRefGoogle ScholarPubMed
Sinha, R. P.Ambasht, N. K.Sinha, J. P.Klisch, M.Häder, D. -P. 2003 UV-B-induced synthesis of mycosporine-like amino acids in three strains of (cyanobacteria)J. Photochem. Photobiol. B: Biol 71 51CrossRefGoogle Scholar
Sivalingam, P. M.Ikawa, T.Yokohama, Y.Nisizawa, K. 1974 Distribution of a 334 UV-absorbing-substance in algae, with special regard of its possible physiological rolesBot. Mar 17 23CrossRefGoogle Scholar
Sommaruga, R.Libkind, D.van Broock, M.Whitehead, K. 2004 Mycosporine-glutaminol-glucoside, a UV-absorbing compound of two yeast speciesYeast 21 1077CrossRefGoogle Scholar
Sommaruga, R.Whitehead, K.Shick, J. M.Lobban, C. S. 2006 Mycosporine-like amino acids in the zooxanthella-ciliate symbiosis Protist 157 185CrossRefGoogle ScholarPubMed
Sonntag, B.Summerer, M.Sommaruga, R. 2007 Sources of mycosporine-like amino acids in planktonic -bearing ciliates (Ciliophora)Freshw. Biol 52 1476CrossRefGoogle Scholar
Sosik, H. M. 1999 Storage of marine particulate samples for light-absorption measurementsLimnol. Oceanogr 44 1139CrossRefGoogle Scholar
Starcevic, A.Akthar, S.Dunlap, W. C.Shick, J. M.Hranueli, D.Cullum, J.Long, P. F. 2008 Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, , have microbial originsProc. Nat. Acad. Sci. USA 105 2533CrossRefGoogle ScholarPubMed
Steinberg, D. K.Nelson, N. B.Carlson, C. A.Prusak, A. C. 2004 Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium sppMar. Ecol. Prog. Ser 267 45CrossRefGoogle Scholar
Stochaj, W. R.Dunlap, W. C.Shick, J. M. 1994 Two new UV-absorbing mycosporine-like amino acids from the sea anemone and the effects of zooxanthellae and spectral irradiance on chemical composition and contentMar. Biol 118 149CrossRefGoogle Scholar
Stumpf, R. P. 2006 Forecasting harmful algal blooms: the roles of optical oceanography and remote sensingOcean Optics XVIII ConfMontreal, Canada9Google Scholar
Subramanian, A.Carpenter, E. J.Karentz, D.Falkowski, P. G. 1999 Bio-optical properties of the marine diazotrophic cyanobacteria spp. I. Absorption and photosynthetic action spectraLimnol. Oceanogr 44 608CrossRefGoogle Scholar
Suhn, H.Lee, H.Jung, J. 2003 Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiencyPhotochem. Photobiol 78 109Google Scholar
Taira, H.Aoki, S.Yamanoha, Y.Taguchi, S. 2004 Daily variation in cellular content of UV-absorbing compounds mycosporine-like amino acids in the marine dinoflagellate J. Photochem. Photobiol. B: Biol 75 145CrossRefGoogle ScholarPubMed
Takano, S.Uemura, D.Hirata, Y. 1978 Isolation and structure of two new amino acids, palythinol and palythene, from the zoanthid Tetrahedron Lett 49 4909CrossRefGoogle Scholar
Takano, S.Uemura, D.Hirata, Y. 1979 Isolation and structure of a 334 nm UV absorbing substance, porphyra-334 from the red algae KjellmanChem. Lett. Jpn 8 419CrossRefGoogle Scholar
Tartarotti, B.Sommaruga, R. 2002 The effect of different methanol concentrations and temperatures on the extraction of mycosporine-like amino acids (MAAs) in algae and zooplanktonArch. Hydrobiol 154 691CrossRefGoogle Scholar
Teai, T.Raharivelomanana, P.Bianchini, J. P.Faura, R.Martín, P. M. V.Cambon, A. 1997 Structure de deux nouvelles iminomycosporines isolées de Tetrahedron Lett 38 5799CrossRefGoogle Scholar
Teai, T.Drollet, J. H.Bianchini, J. P.Cambon, A.Martín, P. M. V. 1998 Occurrence of ultraviolet radiation-absorbing mycosporine-like amino acids in coral mucus and whole corals of French PolynesiaMar. Freshwat. Res 49 127CrossRefGoogle Scholar
Tsujino, I.Yabe, K.Sekikawa, I.Hamanaka, N. 1978 Isolation and structure of a mycosporine from the red alga Tetrahedron Lett 16 1401CrossRefGoogle Scholar
Tsujino, I.Yabe, K.Sekikawa, I. 1980 Isolation and structure of a new amino acid, shinorine from the red alga Yamada et MikamiBot. Mar 23 65Google Scholar
UNEP: United Nations Environment Programme, Environmental Effects Assessment Panel 2006 Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2005Photochem. Photobiol. Sci 5 13CrossRefGoogle Scholar
Vernet, M.Whitehead, K. 1996 Release of ultraviolet-absorbing compounds by the red-tide dinoflagellate Mar. Biol 127 35CrossRefGoogle Scholar
Vincent, W. F.Neale, P. J. 2000 Mechanisms of UV damage to aquatic organismsThe Effects of UV Radiation in the Marine Environmentde Mora, S.Demers, S.Vernet, M.CambridgeCambridge University Press149CrossRefGoogle Scholar
Volkmann, M.Gorbushina, A. A. 2006 A broadly applicable method for extraction and characterization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater originMicrobiol. Lett 255 286CrossRefGoogle ScholarPubMed
Volkmann, M.Gorbushina, A. A.Kedar, L.Oren, A. 2006 Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium ( sp.)Microbiol. Lett 258 50CrossRefGoogle Scholar
Whitehead, K.Hedges, J. I. 2002 Analysis of mycosporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometryMar. Chem 80 27CrossRefGoogle Scholar
Whitehead, K.Hedges, J. I. 2003 Electrospray ionization tandem mass spectrometric and electron impact mass spectrometric characterization of mycosporine-like amino acidsRapid Commun. Mass Spectrom 17 2133CrossRefGoogle ScholarPubMed
Whitehead, K.Hedges, J. I. 2005 Photodegradation and photosensitization of mycosporine-like aminoacidsJ. Photochem. Photobiol. B: Biol 80 115CrossRefGoogle Scholar
Whitehead, K.Vernet, M. 2000 Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla BayLimnol. Oceanogr 45 1788CrossRefGoogle Scholar
Whitehead, K.Karentz, D.Hedges, J. I. 2001 Mycosporine-like amino acids (MAAs) in phytoplankton, a herbivorous pteropod (), and its pteropod predator () in McMurdo Bay, AntarcticaMar. Biol 139 1013Google Scholar
Wu Won, J. J.Rideout, J. A.Chalker, B. E. 1995 Isolation and structure of a novel mycosporine-like amino acid from the reef-building corals and Tetrahedron Lett 36 5255CrossRefGoogle Scholar
Wu Won, J. J.Chalker, B. E.Rideout, J. A. 1997 Two new UV-absorbing compounds from : sulfate esters of mycosporine-like amino acidsTetrahedron Lett 38 2525CrossRefGoogle Scholar
Zhang, L.Li, L.Wu, Q. 2007 Protective effects of mycosporine-like amino acids of sp. PCC 6803 and their partial characterizationJ. Photochem. Photobiol. B: Biol 86 240CrossRefGoogle ScholarPubMed
Zudaire, L.Roy, S. 2001 Photoprotection and long-term acclimation to UV radiation in the marine diatom J. Photochem. Photobiol. B: Biol 62 26CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×