Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T07:17:56.537Z Has data issue: false hasContentIssue false

7 - Liquid chromatography-mass spectrometry for pigment analysis

Published online by Cambridge University Press:  05 March 2012

Suzanne Roy
Affiliation:
Université du Québec à Rimouski, Canada
Carole A. Llewellyn
Affiliation:
Plymouth Marine Laboratory
Einar Skarstad Egeland
Affiliation:
University of Nordland, Norway
Geir Johnsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

LC-MS analysis of chlorophylls and carotenoids: introduction

Because of improvements in HPLC methods for the analysis of phytoplankton pigments, pigments that are unidentified but spectrally related to known compounds are frequently reported in microalgal cultures as well as in natural distributions (Jeffrey and Wright, 1994; Vaulot et al., 1994; Garrido and Zapata, 1998; Airs et al., 2001a; Carreto et al., 2001; Zapata et al., 2004). Distinctions between common chlorophylls and carotenoids can be ascertained during HPLC from on-line UV/visible (UV/Vis) spectra, or co-elution with authentic standards. Several chlorophyll types however occur as suites of compounds. A diverse array of chlorophylls c have been observed in marine microalgal cultures as free acids or esterified by a range of non-polar groups (Garrido and Zapata, 1998; Garrido et al., 2000; Zapata et al., 2001, 2006). Photosynthetic bacteria belonging to the genera Chlorobiaceae produce suites of bacteriochlorophylls differing both in the degree of alkylation at positions C-8 and/or C-12 (Smith and Bobe, 1987; Airs and Keely, 2002), and/or the alcohol esterified to the propionic acid group at C-17 (Caple et al., 1978; Otte et al., 1993; Airs et al., 2001b). Furthermore, chlorophyll a undergoes a range of transformation and alteration reactions when the phytoplankton cell is compromised and as detrital material is transported through the water column; these reactions are potentially indicative of specific environmental conditions or processes (Head and Horne, 1993; Head et al., 1994; Veldhuis et al., 2001; Walker and Keely, 2004). Several carotenoid types also exist as suites of compounds, for example fucoxanthin esters (Airs and Llewellyn, 2006). Characterisation of novel compounds involves rigorous chemical and analytical techniques following preparative isolation of individual components (Egeland et al., 2000). Such an approach can be impractical when unknowns are present in low relative abundance. Liquid chromatography-mass spectrometry (LC-MS) permits acquisition of structural data during a single chromatographic run. Molecular mass information, used in conjunction with PDA UV/vis spectra is often sufficient for the assignment of components. HPLC coupled to tandem MS (LC-tandem MS) adds a further dimension and can be used to identify structural differences that do not affect the UV/Vis absorption properties, or to distinguish ions with the same mass-to-charge ratio (isobaric ions). Furthermore, LC-tandem MS is particularly powerful if MS/MS spectra of an unknown compound are compared with a structurally related, identified compound.

Type
Chapter
Information
Phytoplankton Pigments
Characterization, Chemotaxonomy and Applications in Oceanography
, pp. 314 - 342
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airs, R. L. 2001 Chlorophylls of phototrophic prokaryotes: analytical developments and significance of natural distributionsUniversity of YorkUKGoogle Scholar
Airs, R. L.Keely, B. J. 2000 A novel approach for sensitivity enhancement in atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of chlorophyllsRapid Commun. Mass Spectrom 14 1253.0.CO;2-6>CrossRefGoogle ScholarPubMed
Airs, R. L.Keely, B. J. 2002 Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of bacteriochlorophylls from Chlorobiaceae: characteristic fragmentationsRapid Commun. Mass Spectrom 16 453CrossRefGoogle ScholarPubMed
Airs, R. L.Llewellyn, C. A. 2006 Improved detection and characterization of fucoxanthin-type carotenoids: novel pigments in (Prymnesiophyceae)J. Phycol 42 391CrossRefGoogle Scholar
Airs, R. L.Jie, C.Keely, B. J. 2000 A novel sedimentary chlorin: structural evidence for a chlorophyll origin for aetioporphyrinsOrg. Geochem 31 1253CrossRefGoogle Scholar
Airs, R. L.Atkinson, J. E.Keely, B. J. 2001 Development and application of a high resolution liquid chromatography method for the analysis of complex pigment distributionsJ. Chromatogr 917 167CrossRefGoogle ScholarPubMed
Airs, R. L.Borrego, C. M.Garcia-Gil, J.Keely, B. J. 2001 Identification of the bacteriochlorophyll homologues of strain UdG6053 grown at low light intensityPhotosynth. Res 70 221CrossRefGoogle ScholarPubMed
Aydin, N.Daher, S.Gülaçar, F. O. 2003 On the sedimentary occurrence of chlorophyllone Chemosphere 52 937CrossRefGoogle ScholarPubMed
Barlow, R. G.Cummings, D. G.Gibb, S. W. 1997 Improved resolution of mono-and divinyl chlorophylls and and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLCMar. Ecol. Prog. Ser 161 303CrossRefGoogle Scholar
Bertrand, M.Garrido, J. L.Schoefs, B. 2005 Analysis of photosynthetic pigments: An updateHandbook of PhotosynthesisPessarakli, M.Boca RatonCRC Press657Google Scholar
Borrego, C.García-Gil, L. J. 1994 Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLCPhotosynth. Res 41 157CrossRefGoogle ScholarPubMed
Breithaupt, D. E. 2004 Identification and quantification of astaxanthin esters in shrimp () and in a microalga () by liquid chromatography mass spectrometry using negative ion atmospheric pressure chemical ionisationJ. Agric. Food Chem 52 3870CrossRefGoogle Scholar
Caple, M. B.Chow, H.Strouse, C. E. 1978 Photosynthetic pigments of green sulphur bacteria: The esterifying alcohols of bacteriochlorophylls from J. Biol. Chem 253 6730Google Scholar
Caprioli, R. M. 1990 Continuous-Flow Fast Atom Bombardment Mass SpectrometryChichesterJohn Wiley and SonsCrossRefGoogle ScholarPubMed
Cariou-Le Gall, V.Rosell-Melé, A.Maxwell, J. R. 1998 Data report: characterization of distributions of photosynthetic pigments in sapropels from holes 966D and 969C1. Scientific Results 160 297Google Scholar
Carreto, J. I.Seguel, M.Montoya, N. G.Clement, A.Carignan, M. O. 2001 Pigment profile of the ichthyotoxic dinoflagellate sp. from a massive bloom in southern ChileJ. Plankton Res 23 1171CrossRefGoogle Scholar
Chen, N. H.Bianchi, T. S.Bland, J. M. 2003 Novel decomposition products of chlorophyll- in continental shelf (Louisiana shelf) sediments: Formation and transformation of carotenol chlorin estersGeochim. Cosmochim. Acta 67 2027CrossRefGoogle Scholar
Chikaraishi, Y.Matsumoto, K.Kitazato, H.Ohkouchi, N. 2007 Sources and transformation processes of pheopigments. Stable carbon and hydrogen isotopic evidence from Lake Haruna, JapanOrg. Geochem 38 985CrossRefGoogle Scholar
Chillier, X. F. D.Van Berkel, G. J.Gülaçar, F. O.Buchs, A. 1994 Characterisation of chlorins within a natural chlorine mixture using electrospray/ion trap mass spectrometryOrg. Mass Spectrom 29 672CrossRefGoogle Scholar
Cole, R. B. 1997 Electrospray Ionisation Mass Spectrometry. Fundamentals, Instrumentation and ApplicationsNew YorkJohn Wiley and SonsGoogle Scholar
Dachtler, M.Glaser, T.Kohler, K.Albert, K. 2001 Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and retinaAnal. Chem 73 667CrossRefGoogle ScholarPubMed
Dawson, J. H. J.Guilhaus, M. 1989 Orthogonal-acceleration time-of-flight mass spectrometerRapid Commun. Mass Spectrom 3 155CrossRefGoogle Scholar
Eckardt, C. B.Carter, J. F.Maxwell, J. R. 1990 Combined liquid chromatography/mass spectrometry of tetrapyrroles of sedimentary significanceEnergy and Fuels 4 741CrossRefGoogle Scholar
Eckardt, C. B.Keely, B. J.Maxwell, J. R. 1991 Identification of chlorophyll transformation products in a lake sediment by combined liquid chromatography-mass spectrometryJ. Chomatogr 557 271CrossRefGoogle Scholar
Egeland, E. S.Garrido, J. L.Zapata, M.Maestro, M. A.Liaaen-Jensen, S. 2000 Algal carotenoids. Part 64. Structure and chemistry of 4-keto- 19′-hexanoyloxyfucoxanthin with a novel carotenoid end groupJ. Chem. Soc. Perkin Trans. 11223CrossRefGoogle Scholar
Enzell, C. R.Back, S. 1995 Mass SpectrometryCarotenoids, vol. 1B: SpectroscopyBritton, G.Liaaen-Jensen, S.Pfander, H.BaselBirkhauser261Google Scholar
Fraser, P. D.Enfissi, E. M. A.Goodfellow, M.Eguchi, T.Bramley, P. M. 2007 Metabolite profiling of plant carotenoids using the matrix-assisted laser desorption ionization time-of-flight mass spectrometryThe Plant Journal 49 552CrossRefGoogle ScholarPubMed
Frassanito, R.Cantonati, M.Tardio, M.Mancini, I.Guella, G. 2005 On-line identification of secondary metabolites in freshwater microalgae and cyanobacteria by combined liquid chromatography-photodiode array detection-mass spectrometric techniquesJ. Chromatogr 1082 33CrossRefGoogle ScholarPubMed
Frassanito, R.Flaim, G.Mancini, I.Guella, G. 2006 High production of unexpected carotenoids in Dinophyceae. Astaxanthin esters from the freshwater dinoflagellate Biochem. System. Ecol 34 843CrossRefGoogle Scholar
Frassanito, R.Cantonati, M.Flaim, G.Mancini, I.Guella, G. 2008 A new method for the identification and the structural characterisation of carotenoid esters in freshwater microorganisms by liquid chromatography/electrospray ionisation tandem mass spectrometryRapid Commun. Mass Spectrom 22 3531CrossRefGoogle ScholarPubMed
Garrido, J. L.Zapata, M. 1996 Ion-pair reversed phase high-performance liquid chromatography of algal chlorophyllsJ. Chromatogr. A 738 285CrossRefGoogle Scholar
Garrido, J. L.Zapata, M. 1997 Reversed phase high performance liquid chromatographic separation of mono- and divinyl chlorophyll forms using pyridine-containing mobile phases and a polymeric octadecyl silica columnChromatographia 44 43CrossRefGoogle Scholar
Garrido, J. L.Zapata, M. 1998 Detection of new pigments from (Prymnesiophyceae) by high-performance liquid chromatography, liquid chromatography-mass spectrometry, visible spectroscopy and fast atom bombardment mass spectrometryJ. Phycol 34 70CrossRefGoogle Scholar
Garrido, J. L.Otero, J.Maestro, M. A.Zapata, M. 2000 The main nonpolar chlorophyll from (Prymnesiophyceae) is a chlorophyll 2-monogalactosyldiacylglyceride ester: a mass spectrometry studyJ. Phycol 36 497CrossRefGoogle ScholarPubMed
Garrido, J. L.Rodríguez, F.Campaña, E.Zapata, M. 2003 Rapid separation of chlorophyll and and their demetallated and dephytylated derivatives using a monolithic silica C18 column and a pyridine-containing mobile phaseJ. Chromatogr. A 994 85CrossRefGoogle Scholar
Gauthier-Jaques, A.Bortlik, K.Hau, J.Fay, F. B. 2001 Improved method to track chlorophyll degradationJ. Agric. Food Chem 49 1117CrossRefGoogle ScholarPubMed
Gich, F.Airs, R. L.Danielsen, M.Keely, B. J.Abella, C. A.Garcia-Gil, J.Miller, M.Borrego, C. M. 2003 Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium sp. strain UdG9001Arch. Microbiol 180 417CrossRefGoogle ScholarPubMed
Goericke, R.Shankle, A.Repeta, D. J. 1999 Novel carotenol chlorin esters in marine sediments and water column particulate matterGeochim. Cosmochim. Acta 63 2825CrossRefGoogle Scholar
Goericke, R.Olson, R. J.Shalapyonok, A. 2000 A novel niche for sp. in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North PacificDeep-Sea Res 47 1183CrossRefGoogle Scholar
Graham, J. E.Lecomte, J. T. J.Bryant, D. A. 2008 Synechoxanthin, an aromatic C-40 xanthophyll that is a major carotenoid in the cyanobacterium . PCC 7002J. Nat. Prod 71 1647CrossRefGoogle Scholar
Grewe, C.Griehl, C. 2008 Time- and media-dependent secondary carotenoid accumulation in Biotech. J 3 1232CrossRefGoogle Scholar
Grynbaum, M. D.Hentschel, P.Putzbach, K.Rehbein, J.Krucker, M.Nicholson, G.Albert, K. 2005 Unambiguous detection of astaxanthin and astaxanthin fatty acid esters in krill ( Dana)J. Sep. Sci 28 1685CrossRefGoogle Scholar
Guaratini, T.Vessecchi, R.Pinto, E.Colepicolo, P.Lopes, N. P. 2005 Balance of xanthophylls molecular and protonated molecular ions in electrospray ionisationJ. Mass Spectrom 40 963CrossRefGoogle Scholar
Harada, J.Miyago, S.Mizoguchi, T.Azai, C.Inoue, K.Tamiaki, H.Oh-Oka, H. 2008 Accumulation of chlorophyllous pigments esterified with the geranylgeranyl group and photosynthetic competence in the CT2256-deleted mutant of the green sulphur bacterium Photochem. Photobiol. Sci 7 1179CrossRefGoogle Scholar
Harris, P. G.Carter, J. F.Head, R. N.Harris, R. P.Eglinton, G.Maxwell, J. R. 1995 Identification of chlorophyll transformation products in zooplankton faecal pellets and marine sediment extracts by liquid chromatography/mass spectrometry atmospheric pressure chemical ionisationRapid Commun. Mass Spectrom 9 1177CrossRefGoogle Scholar
Head, E. J. H.Horne, E. P. W. 1993 Pigment transformation and vertical flux in an area of convergence in the North AtlanticDeep-Sea Res. II 40 329CrossRefGoogle Scholar
Head, E. J. H.Hargrave, B. T.Subba Rao, D. V. 1994 Accumulation of phaeophorbide -like pigment in sediment traps during late stages of a spring bloom: A product of dying algae?Limnol. Oceanogr 39 176CrossRefGoogle Scholar
Hoffmann, E.Stroobant, V. 2001 Mass Spectrometry, Principles and ApplicationsNew YorkJohn Wiley and SonsGoogle Scholar
Hunt, J. E.Michalski, T. J. 1991 Desorption-ionisation mass spectrometry of chlorophyllsChlorophyllsScheer, H.Boca RatonCRC Press835Google Scholar
Hunt, J. E.Macfarlane, R. D.Katz, J. J.Dougherty, R. C. 1981 High energy fragmentation of chlorophyll and its deuterated analogue by californium-252 plasma desorption mass spectrometryJ. Am. Chem. Soc 103 6775CrossRefGoogle Scholar
Jeffrey, S. W.Wright, S. W. 1994 Photosynthetic pigments in the HaptophytaThe Haptophyte AlgaeGreen, J. C.Leadbeater, B. S. C.OxfordClarendon Press111Google Scholar
Jie, C.Walker, J. S.Keely, B. J. 2002 Atmospheric pressure chemical ionisation-normal phase-liquid chromatography-mass spectrometry and tandem mass spectrometry of chlorophyll allomersRapid Commun. Mass Spectrom 16 473CrossRefGoogle ScholarPubMed
Keely, B. J.Maxwell, J. R. 1990 Fast atom bombardment mass spectrometric and tandem mass spectrometric studies of some functionalised tetrapyrroles derived from chlorophylls and Energy and Fuels 4 737CrossRefGoogle Scholar
Lacker, T.Strohschein, S.Albert, K. 1999 Separation and identification of various carotenoids by C30 reversed-phase high performance liquid chromatography coupled to UV and atmospheric pressure chemical ionization mass spectrometric detectionJ. Chromatogr 854 37CrossRefGoogle ScholarPubMed
Manske, A. K.Glaeser, J.Kuypers, M. M. M.Overmann, J. 2005 Physiology and phylogeny of green sulphur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black SeaAppl. Environ. Microbiol 71 8049CrossRefGoogle Scholar
Mantoura, R. F. C.Llewellyn, C. A. 1983 The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high performance liquid chromatographyAnal. Chim. Acta 151 297CrossRefGoogle Scholar
McMaster, M. C. 2005 LC-MS A Practical Users GuideNew YorkJohn Wiley and SonsCrossRefGoogle Scholar
Naylor, C. C.Keely, B. J. 1998 Sedimentary purpurins: oxidative transformation products of chlorophyllsOrg. Geochem 28 417CrossRefGoogle Scholar
Otte, S. C. M.Janvan de Meent, E.van Veelen, P. A.Pundsnes, A. S.Amesz, J. 1993 Identification of the major chlorosomal bacteriochlorophylls of the green sulphur bacteria and : their function in lateral energy transferPhotosynth. Res 35 159CrossRefGoogle ScholarPubMed
Persson, S.Sönksen, C. P.Frigaard, N. U.Cox, R. P.Roepstorff, P.Miller, M. 2000 Pigments and proteins in green bacterial chlorosomes studies by matrix-assisted laser desorption ionization mass spectrometryEur. J. Biochem 267 450CrossRefGoogle Scholar
Rahmani, A.Eckardt, C. B.Brereton, R. G.Maxwell, J. R. 1993 The use of liquid chromatography-mass-spectrometry to monitor the allomerization reactions of chlorophyll and pheophytin – identification of the allomers of pheophytin Photochem. Photobiol 57 1048CrossRefGoogle Scholar
Riffé-Chalard, C.Verzegnassi, L.Gülaçar, F. O. 2000 A new series of steryl chlorin esters: phaeophorbide steryl esters in an oxic surface sedimentOrg. Geochem 31 1703CrossRefGoogle Scholar
Řezanka, T.Olšovská, J.Sobotka, M.Sigler, K. 2009 The use of APCI-MS with HPLC and other separation techniques for identification of carotenoids and related compoundsCurrent Anal. Chem 5 1CrossRefGoogle Scholar
Romero-Viana, L.Keely, B. J.Camacho, A.Vicente, E.Miracle, M. R. 2009 Photoautotrophic community changes in Lagunillo del Tejo (Spain) in response to lake level fluctuation: Two centuries of sedimentary pigment recordsOrg. Geochem 40 376CrossRefGoogle Scholar
Rosell-Melé, A.Carter, J. F.Maxwell, J. R. 1999 Liquid chromatography/tandem mass spectrometry of free base alkyl porphyrins for the characterisation of the macrocyclic substituents in components of complex mixturesRapid Commun. Mass Spectrom 13 5683.0.CO;2-J>CrossRefGoogle Scholar
Smith, K. M.Bobe, F. W. 1987 Light adaptation of bacteriochlorophyll producing bacteria by enzymic methylation of their antenna pigmentsJ. Chem. Soc. Chem. Commun 4 276CrossRefGoogle Scholar
Soma, Y.Tani, Y.Soma, M.Mitake, H.Kurihana, R.Hashomoto, S.Watanabe, T.Nakamura, T. 2007 Sedimentary steryl chlorin esters (SCEs) and other photosynthetic pigments as indicators of paleolimnological change over the last 28,000 years from the Buguldeika saddle of Lake BaikalJ. Paleolimnol 37 163CrossRefGoogle Scholar
Squier, A. H.Hodgson, D. A.Keely, B. J. 2002 Sedimentary pigments as markers for environmental change in an Antarctic lakeOrg. Geochem 33 1655CrossRefGoogle Scholar
Squier, A. H.Hodgson, D. A.Keely, B. J. 2004 Structures and profiles of novel sulfur-linked chlorophyll derivatives in an Antarctic lake sedimentOrg. Geochem 35 1309CrossRefGoogle Scholar
Squier, A. H.Hodgson, D. A.Keely, B. J. 2005 Evidence of late Quaternary environmental change in a continental east Antarctic lake from lacustrine sedimentary pigment distributionsAntarct. Sci 17 361CrossRefGoogle Scholar
Suzuki, T.Midonoya, H.Shioi, Y. 2009 Analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometryAnal. Biochem 390 57CrossRefGoogle ScholarPubMed
Talbot, H. M.Head, R. N.Harris, R. P.Maxwell, J. R. 1999 Distribution and stability of steryl chlorine esters in copepod faecal pellets from diatom grazingOrg. Geochem 30 1163CrossRefGoogle Scholar
Talbot, H. M.Head, R. N.Harris, R. P.Maxwell, J. R. 1999 Steryl esters of pyrophaeophorbide a sedimentary sink for chlorophyll Org. Geochem 30 1403CrossRefGoogle Scholar
Talbot, H. M.Head, R. N.Harris, R. P.Maxwell, J. R. 2000 Discrimination against 4-methyl sterol uptake during steryl chlorine ester production by copepodsOrg. Geochem 31 871CrossRefGoogle Scholar
Tani, Y.Matsumoto, G. I.Soma, M.Soma, Y.Hashimoto, S.Kawai, T. 2009 Photosynthetic pigments in sediment core HDP-04 from Lake Hovsgol Mongolia, and their implication for changes in algal productivity and lake environment for the last 1 MaQuatern. Int 205 74CrossRefGoogle Scholar
Vaulot, D.Birrien, J. L.Marie, D.Casotti, R.Veldhuis, M. J. W.Kraay, G. W.Chrétiennot-Dinet, M. J. 1994 Morphology, ploidy, pigment composition, and genome size of cultured strains of (Prymnesiophyceae)J. Phycol 30 1022CrossRefGoogle Scholar
Van Breemen, R. B. 1995 Electrospray liquid chromatography mass spectrometry of carotenoidsAnal. Chem 67 2004CrossRefGoogle Scholar
Van Breemen, R. B. 1996 Innovations in carotenoid analysis using LC-MSAnal. Chem 68 299CrossRefGoogle Scholar
Van Breemen, R. B. 1997 Liquid chromatography/mass spectrometry of carotenoidsPure Appl. Chem 69 2061CrossRefGoogle Scholar
Van Breemen, R. B.Canjura, F. L.Schwartz, S. J. 1991 High performance liquid chromatography continuous flow fast atom bombardment mass spectrometry of chlorophyll derivativesJ. Chromatogr 542 373CrossRefGoogle Scholar
Van Breemen, R. B.Schmitz, H. H.Schwartz, S. J. 1993 Continuous-flow fast atom bombardment liquid chromatography/mass spectrometry of carotenoidsAnal. Chem 65 965CrossRefGoogle Scholar
Van Breemen, R. B.Huang, R. R.Tan, Y.Sander, L. C.Schilling, A. B. 1996 Liquid chromatography/mass spectrometry of carotenoids using atmospheric pressure chemical ionisationJ. Mass Spectrom 31 9753.0.CO;2-S>CrossRefGoogle Scholar
Van Heukelem, L.Lewitus, A. J.Kana, T. M.Craft, N. E. 1994 Improved separations of phytoplankton pigments using temperature-controlled high-performance liquid chromatographyMar. Ecol. Prog. Ser 114 303CrossRefGoogle Scholar
Veldhuis, M. J. W.Kraay, G. W.Timmermans, K. R. 2001 Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growthEur. J. Phycol 36 167CrossRefGoogle Scholar
Verzegnassi, L.Riffé-Chalard, C.Kloeti, W.Gülaçar, F. O. 1999 The analysis of tetrapyrrolic pigments and derivatives in sediments by high performance liquid chromatography atmospheric pressure chemical ionisation mass spectrometryFresen. J. Anal. Chem 364 249CrossRefGoogle Scholar
Verzegnassi, L.Riffé-Chalard, C.Gülaçar, F. O. 2000 Rapid identification of Mg-chelated chlorins by on-line high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometryRapid Commun. Mass Spectrom 14 5903.0.CO;2-P>CrossRefGoogle Scholar
Villanueva, J.Hastings, D. W. 2000 A century-scale record of the preservation of chlorophyll and its transformation products in anoxic sedimentsGeochim. Cosmochim. Acta 64 2281CrossRefGoogle Scholar
Walker, J. S.Keely, B. J. 2004 Distribution and significance of chlorophyll derivatives and oxidation products during the spring phytoplankton bloom in the Celtic Sea April 2002Org. Geochem 35 1289CrossRefGoogle Scholar
Walker, J. S.Squier, A. H.Hodgson, D. A.Keely, B. J. 2002 Origin and significance of 132-hydroxychlorophyll derivatives in sedimentsOrg. Geochem 33 1667CrossRefGoogle Scholar
Walker, J. S.Jie, C.Keely, B. J. 2003 Identification of diastereomeric chlorophyll allomers by atmospheric pressure chemical ionisation liquid chromatography/tandem mass spectrometryRapid Commun. Mass Spectrom 17 1125CrossRefGoogle ScholarPubMed
Wilson, M. A.Airs, R. L.Atkinson, J. E.Keely, B. J. 2004 Bacterioviridins: novel sedimentary chlorins providing evidence for oxidative processes affecting palaeobacterial communitiesOrg. Geochem 35 199CrossRefGoogle Scholar
Wilson, M. A.Hodgson, D. A.Keely, B. J. 2005 Atmospheric pressure chemical ionisation-liquid chromatography/multistage mass spectrometry for assignment of sedimentary bacteriochlorophyll derivativesRapid Commun. Mass Spectrom 19 38CrossRefGoogle ScholarPubMed
Wright, S. W.Jeffrey, S. W.Mantoura, R. F. C.Llewellyn, C. A.Bjørnland, T.Repeta, D.Welschmeyer, N. 1991 Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplanktonMar. Ecol. Prog. Ser 77 183CrossRefGoogle Scholar
Zapata, M.Ayala, A. M.Franco, J. M.Garrido, J. L. 1987 Separation of chlorophylls and their degradation products by reversed-phase high performance liquid chromatographyChromatographia 23 26CrossRefGoogle Scholar
Zapata, M.Edvardsen, B.Rodríguez, F.Maestro, M. A.Garrido, J. L. 2001 Chlorophyll 2 monogalactosyldiacylglyceride ester (chl 2-MGDG). A novel marker pigment for C species (Haptophyta)Mar. Ecol. Prog. Ser 219 85CrossRefGoogle Scholar
Zapata, M.Jeffrey, S. W.Wright, S. W.Rodríguez, F.Garrido, J. L.Clementson, L. 2004 Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomyMar. Ecol. Prog. Ser 270 83CrossRefGoogle Scholar
Zapata, M.Garrido, J. L.Jeffrey, S. W. 2006 Chlorophyll pigments: Current statusAdvances in Photosynthesis and Respiration, vol. 25, Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ApplicationsGrimm, B.Porra, R. J.Rüdiger, W.Scheer, H.DordrechtSpringer39CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×