Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T10:30:06.060Z Has data issue: false hasContentIssue false

23 - Thermal history

Published online by Cambridge University Press:  05 July 2013

Frank D. Stacey
Affiliation:
CSIRO Division of Exploration and Mining, Australia
Paul M. Davis
Affiliation:
University of California, Los Angeles
Get access

Summary

Preamble

A thermal history of the mantle can be calculated almost independently of the core. The logic for this is that core heat is carried up through the mantle by narrow, buoyant plumes that have only a weak interaction with the plate tectonic convection process that cools the mantle. The converse is not true. The core is cooled by loss of heat into a thermal boundary layer at the base of the mantle and so depends on the temperature difference between the core and the deep mantle, 100 to 200 km above the boundary, as well as on mantle rheology. The boundary layer must have developed, that is, the mantle must have cooled substantially, before significant core cooling could occur.

Mantle rheology also controls the cooling of the mantle itself, but it is a mutual control. Tozer (1972) drew attention to the fact that the strong dependence of viscosity on temperature (Eq. (10.27)) has a stabilizing effect on both. If the mantle were to become too cool and viscous to convect at the ‘normal’ rate, convection would slow until radioactive heating caught up. But this does not mean that the heat loss is in equilibrium with the heat source, because the source is not constant. With diminishing radiogenic heat, convection slows down and this means that the mantle is cooling, as is most convincingly demonstrated by a consideration of the heat balance equation (Eq. (23.14)).

Type
Chapter
Information
Physics of the Earth , pp. 376 - 388
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×