Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-26T09:33:02.214Z Has data issue: false hasContentIssue false

3 - Scattering-assisted resonant tunnelling

Published online by Cambridge University Press:  26 January 2010

Get access

Summary

In Section 2.6 we briefly studied the effects of electron scattering on resonant tunnelling which are inevitable in a real system operating at room temperature. The phenomenological Breit–Wigner formula was introduced to describe the incoherent aspect of the electron tunnelling which in general results in a broadening of the transmission peak and thus degraded current P/V ratios in RTDs. In this chapter we look in more detail at various scattering processes, both elastic and inelastic, which have been of great interest not only from a quantum transport physics point of view but also because of the possibility of controlling and even engineering these interactions in semiconductor microstructures. The inelastic longitudinal–optical (LO) phonon scattering, introduced in the preceding chapter, is the most influential process, with Г–X-intervalley scattering and impurity scattering also affecting the resonant tunnelling electrons. Section 3.1 describes the dominant electron–LO-phonon interactions. Both theoretical and experimental studies of a postresonant current peak are presented, which provide much information about the electron–phonon interactions in the quantum well. Section 3.2 then discusses the effects of the upper X-valley which become more significant in AlxGa1−xAs/GaAs systems with an Al mole fraction, x, higher than 0.45 since the energy of the X-valley then becomes lower than that of the Г-valley. Finally, in Section 3.3, we study elastic impurity scattering, which may be caused by residual background impurities or those diffused from the heavily doped contact regions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×