Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-27T08:07:16.548Z Has data issue: false hasContentIssue false

Chapter 11 - Concluding considerations

Published online by Cambridge University Press:  09 October 2009

Get access

Summary

Now there is one outstandingly important fact regarding Spaceship Earth, and that is that no instruction book came with it.

R. Buckminster Fuller, Operating Manual for Spaceship Earth, 1969

Pervasive role of phonons in modern solid-state devices

As illustrated throughout this book, phonon effects are pervasive in modern solidstate devices. As is illustrated by the many examples for Chapters 7–10, the importance of these effects is usually at least as great for dimensionally confined structures as for bulk structures. Indeed, in Chapter 7 the effects of dimensional confinement were seen to be important even for biological structures! In this case, a cylindrical shell immersed in a fluid (Sirenko et al., 1996b) was used to model the vibrational behavior of microtubules (MTs) immersed in water. In addition, the examples of Chapters 7 and 9 illustrate that the elastic continuum model provides an accurate description of acoustic phonons in dimensionally confined structures of many geometries including thin films, nanowires with rectangular and circular cross sections, and a variety of dot-like structures. These structures will inevitably be pervasive as elements of nanoscale structures mimicking the well known and larger microelectromechanical structures. Indeed, Cleland and Roukes (1996) reported a technique for fabricating nanometer-scale mechanical structures from bulk, single-crystal Si substrates. As another example of acoustic phonon effects in dimensionally confined structures, it was recently predicted theoretically that Cerenkov-like effects lead to the generation of high-frequency confined acoustic phonons in quantum wells (Komirenko et al., 2000b); see Section 10.6.

In Chapter 8, values of carrier–optical-phonon scattering rates calculated for a variety of dimensionally confined semiconductor structures were found to exceed 1013 s–1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×