Skip to main content Accessibility help
  • Print publication year: 2011
  • Online publication date: August 2012

12 - Viscosity

[1] H., Staudinger and R., Nodzu. Viskositaetsuntersuchungen an paraffin-loesungen. Berichte der Deutschen Chemischen Gesellschaft, 63 (1930), 721–724.
[2] Y., Furukawa. Inventing Polymer Science, (Philadelphia: University of Pennsylvania Press, 1998), Ch. 2.
[3] W., Kuhn and H., Kuhn. Die Abhaengigkeit der Viskositaet vom Stromungsgefaelle bei hochverduennten Suspensionen und Loesungen. Helvetica Chimica Acta 28 (1945), 97–104.
[4] P., Debye. The intrinsic viscosity of polymer solutions. J. Chem. Phys., 14 (1946), 415–424.
[5] J. G., Kirkwood and J., Riseman. The intrinsic viscosities and diffusion coefficients of flexible macromolecules in solution. J. Chem. Phys., 16 (1948), 565–573.
[6] N., Saito. Concentration dependence of the viscosity of high polymer solutions. J. Phys. Soc. Japan, 5 (1949), 4-8; N. Saito. A remark on the hydrodynamical theory of the viscosity of solutions of macromolecules. J. Phys. Soc. Japan, 7 (1952), 447–450.
[7] A. F., Martin. A new correlation of viscosity and concentration for high molecular weight compounds. Division of Cellulose Chemistry, Am. Chem. Soc. Meeting, Memphis, 1942. Presented Paper.
[8] S., Matsuoka and M. K., Cowman. Equation of state for polymer solution. Polymer, 43 (2002), 3447–3453.
[9] E., Rotureau, E., Dellacherie, and A., Durand. Concentration dependence of aqueous solution viscosities of amphiphilic polymers. Macromolecules, 38 (2005), 4940–4941.
[10] D. W., Schaefer. Polymer reptation in semidilute solutions. J. Polymer Sci. Polymer Symp., 73 (1985), 121–131.
[11] P.-G., Gennes. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys., 55 (1971), 572–579.
[12] A. R., Altenberger and J. S., Dahler. Application of a new renormalization group to the equation of state of a hard-sphere fluid. Phys. Rev. E, 54 (1996), 6242–6252.
[13] G. D. J., Phillies. Low-shear viscosity of nondilute polymer solutions from a generalized Kirkwood–Riseman model. J. Chem. Phys., 116 (2002), 5857–5866.
[14] G. D. J., Phillies. Self-consistency of hydrodynamic models for low-shear viscosity and self-diffusion. Macromolecules, 35 (2002), 7414–7418.
[15] G. D. J., Phillies and C. A., Quinlan. Analytic structure of the solutionlike–meltlike transition in polymer solution dynamics. Macromolecules, 28 (1995), 160–164.
[16] A., Jamieson and D., Telford. Newtonian viscosity of semidilute solutions of polystyrene in tetrahydrofuran. Macromolecules, 15 (1982), 1329–1332.
[17] R., Cush, P. S., Russo, Z., Kucukyavuz, et al.Rotational and translational diffusion of a rodlike virus in random coil polymer solutions. Macromolecules, 30 (1997), 4902–4926.
[18] R., Cush, D., Dorman, and P. S., Russo. Rotational and translational diffusion of tobacco mosaic virus in extended and globular polymer solutions. Macromolecules, 37 (2004), 9577–9584.
[19] H., Enomoto,Y., Einaga, and A., Teramoto. Viscosity of concentrated solutions of rodlike polymers. Macromolecules, 18 (1985), 2695–2702.
[20] R., Furukawa, J. L., Arauz-Lara, and B. R., Ware. Self-diffusion and probe diffusion in dilute and semidilute aqueous solutions of dextran. Macromolecules, 24 (1991), 599–605.
[21] F. M., Goycoolea, E. R., Morris, R. K., Richardson, and A. E., Bell. Solution rheology of mesquite gum in comparison with gum arabic. Carbohydrate Polymers, 27 (1995), 37–45.
[22] C. E., Ioan, T., Aberle, and W., Burchard. Light scattering and viscosity behavior of dextran in semidilute solution. Macromolecules, 34 (2001), 326–336.
[23] C. E., Ioan, T., Aberle, and W., Burchard. Structure properties of dextran. 2. Dilute solution. Macromolecules, 33 (2000), 5730–5739.
[24] J. E., Martin. Polymer self-diffusion: Dynamic light scattering studies of isorefractive ternary solutions. Macromolecules, 17 (1984), 1279–1283.
[25] C. N., Onyenemezu, D., Gold, M., Roman, and W. G., Miller. Diffusion of polystyrene latex spheres in linear polystyrene nonaqueous solutions. Macromolecules, 26 (1993), 3833–3837.
[26] N. A., Busch, T., Kim, and V. A., Bloomfield. Tracer diffusion of proteins in DNA solutions. 2. Green fluorescent protein in crowded DNA solutions. Macromolecules, 33 (2000), 5932–5937.
[27] W., Brown, and R., Rymden, Comparison of the translational diffusion of large spheres and high molecular weight coils in polymer solutions. Macromolecules, 21 (1988), 840–846.
[28] S. C., Smedt, P., Dekeyser, V., Ribitsch, A., Lauwers, and J., Demeester. Viscoelastic and transient network properties of hyaluronic acid as a function of the concentration. Biorheology, 30 (1993), 31–41.
[29] T., Yang and A. M., Jamieson. Diffusion of latex spheres through solutions of hydroxypropylcellulose in water. J. Coll. Interf. Sci., 126 (1988), 220–230.
[30] Z., Pu and W., Brown. Translational diffusion of large silica spheres in semidilute polymer solutions. Macromolecules, 22 (1989), 890–896.
[31] M., Sakai, T., Fujimoto, and M., Nagasawa. Steady flow properties of monodisperse polymer solutions. Molecular weight and polymer concentration dependences. Steady shear compliance at zero and finite shear rates. Macromolecules, 5 (1972), 786–792.
[32] K., Osaki, Y., Einaga, M., Kurata, and M., Tamura. Creep behavior of polymer solutions. I. A new type of apparatus for creep and creep recovery. Macromolecules, 4 (1971), 77–82.
[33] Y., Einaga, K., Osaki, M., Kurata, and M., Tamura. Creep behavior of polymer solutions. II. Steady-shear compliance of concentrated polymer solutions. Macromolecules, 4 (1970), 82–87.
[34] H., Tao, T. P., Lodge, and E. D., von Meerwall. Diffusivity and viscosity of concentrated hydrogenated polybutadiene solutions. Macromolecules, 33 (2000), 1747–1758.
[35] G. S., Ullmann, K., Ullmann, R. M., Lindner, and G. D. J., Phillies. Probe diffusion of polystyrene latex spheres in poly(ethylene oxide) : water. J. Phys. Chem., 89 (1985), 692–700.
[36] R. H., Colby, L. J., Fetters, W. G., Funk, and W. W., Graessley. Effects of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions. Macromolecules, 24 (1991), 3873–3882.
[37] V. E., Dreval, A. Ya., Malkin, and G. O., Botvinnik. Approach to generalization of concentration dependence of zero-shear viscosity in polymer solutions. J. Polymer Sci.: Polymer Phys. Ed., 11 (1973), 1055–1066.
[38] Dreval, et al. (37) cite this as A. Ya., Malkin, N. K., Blinova, and G. V., Vinogradov. Paper presented at the VI Symposium on Polymer Rheology, Moscow, (1971).
[39] Dreval, et al. (37) cite this as O. A., Mochalova, I. Ya., Slonim, V. E., Dreval, et al. Vysokomol. Soedin., A14 (1972), 1294.
[40] Dreval, et al. (37) cite these as (a) A. A., Tager and V. E., Dreval. Usp. Khim., 36 (1976), 888; (b) A. A. Tager and V. E. Dreval. Rheol. Acta, 9 (1970), 517; and (c) A. A. Tager, V. E. Dreval, G. O. Botvinnick, et al. Vysokomol. Soedin., A14 (1972), 1381.
[41] A., Ohshima, H., Kudo, T., Sato, and A., Teramoto. Entanglement effects in semiflexible polymer solutions. 1. Zero-shear viscosity of poly(n-hexyl isocyanate) solutions. Macromolecules, 28 (1995), 6095–6099.
[42] A., Ohshima, A., Yamagata, T., Sato, and A., Teramoto. Entanglement effects in semiflexible polymer solutions. 3. Zero-shear viscosity and mutual diffusion coefficient of poly(n-hexyl isocyanate) solutions. Macromolecules, 32 (1991), 8645–8654.
[43] J., Roovers. Concentration dependence of the relative viscosity of star polymers. Macromolecules, 27 (1994), 5359–5364.
[44] E., Raspaud, D., Lairez, and M., Adam. On the number of blobs per entanglement in semidilute and good solvent solution: melt influence. Macromolecules, 28 (1995), 927–933.
[45] T.-H., Lin and G. D. J., Phillies. Probe diffusion in polyacrylic acid : water – effect of polymer molecular weight. J. Coll. Interf. Sci., 100 (1984), 82–95.
[46] T.-H., Lin and G. D. J., Phillies. Probe diffusion in poly(acrylic acid) : water. Effect of probe size. Macromolecules, 17 (1984), 1686–1691.
[47] G. D. J., Phillies, C., Richardson, C. A., Quinlan, and S. Z., Ren. Transport in intermediate and high molecular weight hydroxypropylcellulose/water solutions. Macromolecules, 26 (1993), 6849–6858.
[48] G. H., Koenderinck, S., Sacanna, D. G. A. L., Aarts, and A. P., Philipse. Rotational and translational diffusion of fluorocarbon tracer spheres in semidilute xanthan solutions. Phys. Rev. E, 69 (2004), 021804 1–12.
[49] M., Milas, M., Rinaude, M., Knipper, and J. L., Schuppiser. Flow and viscoelastic properties of xanthan gum solutions. Macromolecules, 23 (1990), 2506–2511.
[50] S., Onogi, S., Kinura, T., Kato, T., Masuda, and N., Miyanaga. Effects of molecular weight and concentration on flow properties of concentrated polymer solutions. J. Polymer Sci. C, 15 (1966), 381–406.
[51] M., Doi and S. F., Edwards. The Theory of Polymer Dynamics, (Oxford: Clarendon Press, 1986).
[52] N., Nemoto, T., Kojima, T., Inoue, et al.Self-diffusion and tracer-diffusion coefficient and viscosity of concentrated solutions of linear polystyrenes in dibutyl phthalate. Macromolecules, 22 (1989), 3793–3798.
[53] N., Nemoto, T., Kojima, T., Inoue, and M., Kurata. Self-diffusion of polymers in the concentrated regime. I. Temperature dependence of the self-diffusion coefficient and the steady viscosity of polystyrene in dibutyl phthalate. Polymer Journal, 20 (1988), 875–881.
[54] W. W., Graessley, T., Masuda, J. E. L., Roovers, and N., Hadjichristidis. Rheological properties of linear and branched polyisoprene. Macromolecules, 9 (1976), 127–141.
[55] H., Kajiura, Y., Ushiyama, T., Fujimoto, and M., Nagasawa. Viscoelastic properties of star-shaped polymers in concentrated solutions. Macromolecules, 11 (1978), 894–899.
[56] L. A., Utracki and J. E. L., Roovers. Viscosity and normal stresses of linear and star branched polystyrene solutions. I. Application of corresponding states principle to zero-shear viscosities. Macromolecules, 6 (1973), 366–372.
[57] D., Gold, C., Onyenemezu, and W. G., Miller. Effect of solvent quality on the diffusion of polystyrene latex spheres in solutions of poly(methylmethacrylate). Macromolecules, 29 (1996), 5700–5709.
[58] Y., Isono and M., Nagasawa. Solvent effects on rheological properties of polymer solutions. Macromolecules, 13 (1980), 862–867.
[59] R., Simha and F. S., Chan. Corresponding state relations for the Newtonian viscosity of concentrated polymer solutions. Temperature dependence. J. Phys. Chem., 75 (1971), 256–267.