References[1] The author has sought to achieve completeness, but is sufficiently conscious of his fallibility to assume that some significant method has been overlooked.
[2] J., Skolnick and A., Kolinski. Dynamics of dense polymer systems. Computer simulations and analytic theories. Adv. Chem. Phys., 78 (1989), 223–278.
[3] T. P., Lodge, N. A., Rotstein, and S., Prager. Dynamics of entangled polymer liquids. Do entangled chains reptate?Adv. Chem. Phys., 79 (1990), 1–132.
[4] H., Tao, T. P., Lodge, and E. D., von Meerwall. Diffusivity and viscosity of concentrated hydrogenated polybutadiene solutions. Macromolecules, 33 (2000), 1747–1758.
[5] V. E., Dreval, A. Ya., Malkin, and G. O., Botvinnik. Approach to generalization of concentration dependence of zero-shear viscosity in polymer solutions. J. Polymer Sci.: Polymer Phys. Ed., 11 (1973), 1055–1066.
[6] P.-G., GennesScaling Concepts in Polymer Physics, Third Printing, (Ithaca, NY: Cornell UP, 1988).
[7] W. W., Graessley. The entanglement concept in polymer rheology. Adv. Polym. Sci., 16 (1974), 1–179.
[8] C., Konak and W., Brown. Coupling of density to concentration fluctuations in concentrated solutions of polystyrene in toluene. J. Chem. Phys., 98 (1993), 9014–9017.
[9] T., Koch, G., Strobl, and B., Stuehn. Light-scattering study of fluctuations in concentration, density, and local anisotropy in polystyrene-dioxane mixtures. Macromolecules, 25 (1992), 6255–6261.
[10] J., Roovers. Concentration dependence of the relative viscosity of star polymers. Macromolecules, 27 (1994), 5359–5364.
[11] M., Antonietti, T., Pakula, and W., Bremser. Rheology of small spherical polystyrene microgels: A direct proof for a new transport mechanism in bulk polymers besides reptation. Macromolecules, 28 (1995), 4227–4233.
[12] M., Sedlak. Real-time monitoring of the origination of multimacroion domains in a polyelectrolyte solution. J. Chem. Phys., 122 (2005), 151102 1–3, and references therein.
[13] M., Delsanti, J., Chang, P., Lesieur, and B., Cabane. Dynamic properties of aqueous dispersions of nanometric particles near the fluid–solid transition. J. Chem. Phys., 105 (1996), 7200–7209.
[14] X., Shi, R. W., Hammond, and M. D., Morris. DNAconformational dynamics in polymer solutions above and below the entanglement limit. Anal. Chem., 67 (1995), 1132–1138.
[15] D. M., Heuer, S., Saha, and L. A., Archer. Electrophoretic dynamics of large DNA stars in polymer solutions and gels. Electrophoresis, 24 (2003), 3314–3322.
[16] A., Einstein. Ueber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der Physik, 322 (1905), 549–560.
[17] L., Mitnik, L., Salome, J. L., Viovy, and C., Heller. Systematic study of field and concentration effects in capillary electrophoresis of DNAin polymer solutions. J. Chromatogr. A, 710 (1995), 309–321.
[18] C. W., Oseen. Hydrodynamik. Akademische Verlagsgesellschaft, M. B. H. Leipzig. 1927.
[19] G. J., Kynch. The slow motion of two or more spheres through a viscous fluid. J. Fluid Mech., 5 (1959), 193–208.
[20] J. G., Kirkwood and J., Riseman. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys., 16 (1948), 565–573.
[21] J. C., Crocker. Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres. J. Chem. Phys., 106 (1997), 2837–2840.
[22] J.-C., Meiners and S. R., Quake. Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys. Rev. Lett., 82 (1999), 2211–2214.
[23] P. M., Cotts and J. C., Selser. Polymer–polymer interactions in dilute solution. Macromolecules, 23 (1990), 2050–2057.
[24] M., Tokuyama and I., Oppenheim. On the theory of concentrated hard-sphere suspensions. Physica A, 216 (1995), 85–119.
[25] J. C., Crocker, M. T., Valentine, E. R., Weeks, et al.Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett., 85 (2000), 888–891.
[26] M. L., Gardel, M. T., Valentine, J. C., Crocker, A. R., Bausch, and D. A., Weitz. Microrheology of entangled F-actin solutions. Phys. Rev. Lett., 91 (2003), 158302 1–4.
[27] D. T., Chen, E. R., Weeks, J. C., Crocker, et al.Rheological microscopy: local mechanical properties from microrheology. Phys. Rev. Lett., 90 (2003), 108301 1–4.
[28] J. G., Kirkwood. Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys., 2 (1934), 351–361.
[29] J. E., Martin. Configurational diffusion in semidilute solutions. Macromolecules, 19 (1986), 1278–1281.
[30] B. H., Zimm. Dynamics of polymer molecules in dilute solution: Viscosity, flow birefringence and dielectric loss. J. Chem. Phys., 24 (1956), 269–278.
[31] P. E., Rouse Jr., A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys., 21 (1953), 1272–1280.
[32] A. R., Altenberger, J. S., Dahler, and M., Tirrell. On the theory of dynamic screening in macroparticle solutions. Macromolecules, 21 (1988), 464–469.
[33] C. W. J., Beenakker and P., Mazur. Diffusion of spheres in a concentrated suspension – resummation of many-body hydrodynamic interactions. Physics Lett. A, 98 (1983), 22–24.
[34] P. G., Gennes. Dynamics of entangled polymer solutions. II. Inclusion of hydrodynamic interactions. Macromolecules, 9 (1976), 594–598.
[35] K. F., Freed and S. F., Edwards. Polymer viscosity in concentrated solutions. J. Chem. Phys., 61 (1974), 3626–3633.
[36] K. F., Freed and A., Perico. Consideration on the multiple scattering representation of the concentration dependence of the viscoelastic properties of polymer systems. Macromolecules, 14 (1981), 1290–1298.
[37] J., Won, C., Onyenemezu, W. G., Miller, and T. P., Lodge. Diffusion of spheres in entangled polymer solutions: a return to Stokes–Einstein behavior. Macromolecules, 27 (1994), 7389–7396.
[38] T., Chang, C. C., Han, L. M., Wheeler, and T. P., Lodge. Comparison of diffusion coefficients in ternary polymer solutions measured by dynamic light scattering and forced Rayleigh scattering. Macromolecules, 21 (1988), 1870–1872.
[39] A., Goodman, Y., Tseng, and D., Wirtz. Effect of length, topology, and concentration on the microviscosity and microheterogeneity of DNA solutions. J. Mol. Bio., 323 (2002), 199–215.
[40] M. G., Brereton and A., Rusli. Fluctuation–dissipation relations for polymer systems. I. The molecular weight dependence of the viscosity. Chemical Physics, 26 (1977), 23–28.
[41] J., Gao and J. H., Weiner. Excluded-volume effects in rubber elasticity. 4. Nonhydro-static contribution to stress. Macromolecules, 22 (1989), 979–984.
[42] A. E., Likhtman. Whither tube theory: From believing to measuring. J. Non-Newtonian Fluid Mech. (2009), 128–161.
[43] S. A., Rice and P., Gray. The Statistical Mechanics of Simple Liquids: an Introduction to the Theory of Equilibrium and Non-equilibrium Phenomena, (New York: Interscience, 1965).