Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: August 2012

10 - Dynamics of colloids

Summary

Introduction

We move in this chapter from random coils to colloidal particles. This chapter treats transport properties of colloid solutions that are directly analogous to the polymer properties considered in the remainder of this volume, including single-particle diffusion, mutual diffusion and quasielastic light scattering, rotational diffusion, viscosity, and viscoelastic properties. Colloidal particles have a wide range of shapes; this chapter emphasizes spheres. Some systems treated here are thermo-dynamically stable; in others, the density difference between colloid and solvent is large enough such that the particles tend to settle. This distinction is purely a consequence of the strength of the local gravitational field, and has no fundamental significance.

Why is it of interest to consider colloid dynamics?

First, the fundamental forces between neutral colloidal spheres are the same as the fundamental forces between neutral polymers. Polymers and colloids are equally subject to excluded-volume forces, hydrodynamic forces, van der Waals interactions, and to the random thermal forces that drive Brownian motion.

Second, the dynamic equations for polymer motion and for colloid motion are qualitatively the same, namely they are generalized Langevin (e.g.,Mori–Zwanzig) equations, including direct and hydrodynamic forces on each colloid particle or polymer segment, hydrodynamic drag forces, and “random” thermal forces due to solvent motion, all leading to coupled diffusive motion.

Because the forces and the dynamic equations of motion are fundamentally the same, it should not be surprising that the dynamic behaviors of polymers and colloids have substantial similarities.

References
[1] J. G., Kirkwood and J, Riseman. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys., 16 (1948), 565–573.
[2] G. J., Kynch. The slow motion of two or more spheres through a viscous fluid. J. Fluid Mech., 5 (1959), 193–208.
[3] J. C., Crocker. Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres. J. Chem. Phys., 106 (1997), 2837–2840.
[4] J.-C, Meiners and S. R., Quake. Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys. Rev. Lett., 82 (1999), 2211–2214.
[5] M, Brunner, J, Dobnikar, H.-H, von Gruenberg, and C, Bechinger. Direct measurement of three-body interactions amongst charged colloids. Phys. Rev. Lett., 92 (2004), 078301 1–4.
[6] W. G., Hoover and F. H., Ree. Melting transition and communal entropy for hard spheres. J. Chem. Phys., 49 (1968), 3609–3617.
[7] P. Y., Cheng and H. K., Schachman. Studies on the validity of the Einstein viscosity law and Stokes' law of sedimentation. J. Polymer Sci., 16 (1955), 19–31.
[8] P. N., Pusey and W., Megen. Measurement of the short-time self-mobility of particles in concentrated suspension. Evidence for many-particle hydrodynamic interactions. J. Physique, 44 (1983), 285–291.
[9] A., Veluwen, H. N., W.|Lekkerkerker, C. G., Kruif, and A., Vrij. Measurement of the short-time self-diffusion coefficient in dilute and concentrated suspensions: Influence of direct particle interactions. J. Chem. Phys., 87 (1987), 4873–4880.
[10] V, Degiorgio, R, Piazza, and R. B., Jones. Rotational diffusion in concentrated colloidal dispersions of hard spheres. Phys. Rev. E, 52 (1995), 2707–2717.
[11] A., Blaaderen, J, Peetermans, G, Maret, and J. K. G., Dhont. Long-time selfdiffusion of spherical colloidal particles measured with fluorescence recovery after photobleaching. J. Chem. Phys., 96 (1992), 4591–4603.
[12] M. M., Kops-Werkhoven, C., Pathmamanoharan, A., Vrij, and H. M., Fijnaut. Concentration-dependence of the self-diffusion coefficient of hard, spherical-particles measured with photon-correlation spectroscopy. J. Chem. Phys., 77 (1982), 5913–5922; also M. M. Kops-Werkhoven. Unpublished D.Sc. Thesis, Rijksuniversiteit Te Utrecht (1982).
[13] W., Megen, S. M., Underwood, and I., Snook. Tracer diffusion in concentrated colloidal dispersions. J. Chem. Phys., 85 (1986), 4065–4072.
[14] W., Megen and S. M., Underwood. Tracer diffusion in concentrated colloidal dispersions. II. Non-Gaussian effects. J. Chem. Phys., 88 (1988), 7841–7846.
[15] W., Megen and S. M., Underwood. Motions of particles in concentrated dispersions as observed by dynamic light scattering. Langmuir, 6 (1990), 35–42.
[16] A., Imhof, A., Blaaderen, G., Maret, J., Mellema, and J. K. G., Dhont. A comparison between the long-time self-diffusion and low shear viscosity of concentrated dispersions of charged colloidal silica spheres. J. Chem. Phys., 100 (1994), 2170–2181.
[17] G. H., Koenderinck and A. P., Philipse. Rotational and translational self-diffusion in colloidal sphere suspensions and the applicability of generalized Stokes–Einstein relations. Langmuir, 16 (2001), 5631–5638.
[18] M. H., Blees, J. M., Geurts, and J. C., Leyte. Self-diffusion of charged polybutadiene latex particles in water measured by pulsed field gradient NMR. Langmuir, 12 (1996), 1947–1957.
[19] A., Brands, H., Versmold, and W., Megen. Tracer particle diffusion in crystal-like ordered colloidal suspensions. J. Chem. Phys., 110 (1999), 1283–1289.
[20] M. M., Kops-Werkhoven and H. M., Fijnaut. Dynamic light scattering and sedimentation experiments on silica dispersions at finite concentrations. J. Chem. Phys., 74 (1981), 1618–1625.
[21] H. J., Mos, C., Pathmamanoharan, J. K. G., Dhont, and C. G., Kruif. Scattered light intensity cross correlation. II. Experimental. J. Chem. Phys., 84 (1986), 45–49.
[22] G. D. J., Phillies. Suppression of multiple scattering effects in quasi-elastic light scattering by homodyne cross-correlation techniques. J. Chem. Phys., 74 (1981), 260–262.
[23] G. D. J., Phillies. Experimental demonstration of multiple-scattering suppression in quasielastic-light-scattering by homodyne coincidence techniques. Phys. Rev. A, 24 (1981), 1939–1943.
[24] P. N., Segre, O. P., Behrend, and P. N., Pusey. Short-time Brownian motion in colloidal suspensions: Experiment and simulation. Phys. Rev. E, 52 (1995), 5070–5083.
[25] P. N., Segre and P. N., Pusey. Scaling of the dynamic scattering function of concentrated colloidal suspensions. Phys. Rev. Lett., 77 (1996), 771–774.
[26] P. N., Segre, S. P., Meeker, P. N., Pusey, and W. C. K., Poon. Viscosity and structural relaxation in suspensions of hard-sphere colloids. Phys. Rev. Lett., 75 (1995), 958–961.
[27] M., Delsanti, J., Chang, P., Lesieur, and B., Cabane. Dynamic properties of aqueous dispersions of nanometric particles near the fluid-solid transition. J. Chem. Phys., 105 (1996), 7200–7209.
[28] G., Bueldt. Interpretation of quasi-elastic light scattering measurements from moderately concentrated solutions. Eur. Polym. J., 12 (1976), 239–242.
[29] R., Brown. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag., 4 (1828), 161–173.
[30] J., Perrin. Brownian motion and molecular reality. Annales de Chimie et de Physique, 18 (1909), 1–114.
[31] A., Kasper, E., Bartsch, and H., Sillescu. Self-diffusion in concentrated colloid suspensions studied by digital video microscopy of core-shell tracer particles. Langmuir, 14 (1998), 5004–5010.
[32] W. K., Kegel and A., Blaaderen. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science, 287 (2000), 290–293.
[33] E. R., Weeks, J. C., Crocker, A. W., Levitt, A., Schofield, and D. A., Weitz. Threedimensional direct imaging of structural relaxation near the colloidal glass transition. Science, 287 (2000), 627–631.
[34] E. R., Weeks and D. A., Weitz. Properties of cage rearrangements observed near the colloidal glass transition. Phys. Rev. Lett., 89 (2002), 095704 1–4.
[35] Y., Gao and M., Kilfoil. Direct imaging of dynamical heterogeneities near the colloid-gel transition. Phys. Rev. Lett., 99 (2007), 078301 1–4.
[36] W., Megen, S. M., Underwood, J., Muller, et al.Progr. Theor. Phys. Supp., 126 (1997), 171–180.
[37] S. C., Glotzer, V. N., Novikov, and T. B., Schroeder. Time-dependent, four-point density correlation function description of dynamical heterogeneity and decoupling in supercooled liquids. J. Chem. Phys., 112 (2000), 509–512.
[38] C., Donati, S. C., Glotzer, P. H., Poole, W., Kob, and S. J., Plimpton. Spatial correlations of mobility and immobility in a glass-forming Lennard–Jones liquid. Phys. Rev. E, 60, (1999), 3107–3119.
[39] N., Lacevic, F. W., Starr, T. B., Schroeder, V. N., Novikov, and S. C., Glotzer. Growing correlation length on cooling below the onset of caging in a simulated glass-forming liquid. Phys. Rev. E, 66 (2002), 030101(R).
[40] R., Piazza and V., Degiorgio. Rotational diffusion of hard spheres: Forward depolarized light-scattering measurements and comparison to theory and simulation. J. Phys.: Condens. Matt., 8 (1996), 9497–9502.
[41] M. P., Lettinga, C. M., Kats, and A. P., Philipse. Rotational diffusion of tracer spheres in packings and dispersions of colloidal spheres studied with time-resolved phosphorescence anisotropy. Langmuir, 16 (2000), 6166–6172.
[42] G. H., Koenderinck, H., Zhang, M. P., Lettinga, G., Naegele, and A. P., Philipse. Rotational tracer diffusion in binary colloidal sphere mixtures. Phys. Rev. E, 64 (2001), 022401 1–4.
[43] A., Toelle and H., Sillescu. Rotational diffusion of colloid spheres in suspension investigated by deuteron NMR.Langmuir, 10 (1994), 4420–4422.
[44] M., Delong and P. S., Russo. Particle size distribution by zero angle depolarized light scattering. In ACS Advances Series #227, Eds. C., Craver and T., Provder, (Washington, D.C.: American Chemical Society, 1990) 65–81.
[45] D., Kivelson and P. A., Madden. Light scattering studies of molecular liquids. Ann. Rev. Phys. Chem., 31 (1980), 523–558.
[46] G. K., Batchelor. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech., 83 (1977), 97–117.
[47] A. R., Altenberger and J. S., Dahler. A renormalization group calculation of the viscosity of a hard-sphere suspension. J. Coll. Interf. Sci., 189 (1997), 379–381.
[48] A. R., Altenberger and J. S., Dahler. Application of a new renormalization group to the equation of state of a hard-sphere fluid. Phys. Rev. E, 54 (1996), 6242–6252.
[49] I. M., Schepper, E. G. D., Cohen, and R., Verberg. Comment on “Viscosity and structural relaxation in suspensions of hard-sphere colloids.” Phys. Rev. Lett., 77 (1996), 584.
[50] S.-E., Phan, W. B., Russel, Z., Cheng, et al.Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions. Phys. Rev. E, 54 (1996), 6633–6645.
[51] S. P., Meeker, W. C. K., Poon, and P. N., Pusey. Concentration dependence of the low-shear viscosity of suspensions of hard-sphere colloids. Phys. Rev. E, 55 (1997), 5718–5722.
[52] J. C., der Werff and C. G., Kruif. Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate. J. Rheol., 33 (1989), 421–454.
[53] C. G., Kruif, E. M. F., Iersel, A., Vrij, and W. B., Russel. Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction. J. Chem. Phys., 83 (1985), 4717–4725.
[54] W. C. K., Poon, S. P., Meeker, P. N., Pusey, and P. N., Segre. Viscosity and structural relaxation in concentrated hard-sphere colloids. J. Non-Newtonian Fluid Mech., 67(1996), 179–189.
[55] D. A. R., Jones, B., Leary, and D. V., Boger. The rheology of a concentrated colloidal suspension of hard spheres. J. Colloid Interf. Sci., 147 (1991), 479–495.
[56] M., Marshall and C. F., Zukowski, IV. Experimental studies on the rheology of hardsphere suspensions near the glass transition. J. Phys. Chem., 94 (1990), 1164–1171.
[57] J. D., Lee, J.-H., So, and S.-M., Yang. Rheological behavior and stability of concentrated silica suspensions. J. Rheol., 43 (1999), 1117–1140.
[58] G. D. J., Phillies. Polymer solution viscoelasticity from two-parameter temporal scaling. J. Chem. Phys., 110 (1999), 5989–5992.
[59] T., Shikata and D. S., Pearson. Viscoelastic behavior of concentrated spherical suspensions. J. Rheol., 38 (1994), 601–616.
[60] M., Antonietti, T., Pakula, and W., Bremser. Rheology of small spherical polystyrene microgels: A direct proof for a new transport mechanism in bulk polymers besides reptation. Macromolecules, 28 (1995), 4227–4233.
[61] M., Tokuyama and I., Oppenheim. On the theory of concentrated hard-sphere suspensions. Physica A, 216 (1995), 85–119.
[62] M., Tokuyama. Self-diffusion in multi-component glass-forming systems. Physica A, 388 (2009), 3083–3092.
[63] G. D. J., Phillies. Observations upon the dynamic structure factor of interacting spherical polyelectrolytes. J. Chem. Phys., 79 (1983), 2325–2332.
[64] P., Doherty and G. B., Benedek. Effect of electric charge on diffusion of macromolecules. J. Chem. Phys., 61 (1974), 5426–5434.
[65] G. D. J., Phillies. Effect of intermacromolecular interactions on diffusion. I. Twocomponent solutions. J. Chem. Phys., 60 (1974), 976–982.
[66] G. D. J., Phillies. Effect of intermacromolecular interactions on diffusion. II. Threecomponent solutions. J. Chem. Phys., 60 (1974), 983–989.
[67] G. D. J., Phillies. Effect of intermacromolecular interactions on diffusion. III. Electrophoresis in three-component solutions. J. Chem. Phys., 59 (1973), 2613–2617.
[68] G. D. J., Phillies. Fluorescence correlation spectroscopy and non-ideal solutions. Biopolymers, 14 (1975), 499–508.
[69] V. G., Taratuta, A., Holschbach, G. M., Thurston, A., Blankschtein, and G. B., Benedek. Liquid–liquid phase separation of aqueous lysozyme solutions: Effects of pH and salt identity. J. Chem. Phys., 94 (1990), 2140–2144.
[70] G. D. J., Phillies. Comment on “Critical behavior of a binary mixture of protein and salt water.” Phys. Rev. Lett., 55 (1985), 1341.
[71] M., Muschol and F., Rosenberger. Liquid–liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys., 107 (1997), 1953–1962.