References[1] J. G., Kirkwood and J, Riseman. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys., 16 (1948), 565–573.
[2] G. J., Kynch. The slow motion of two or more spheres through a viscous fluid. J. Fluid Mech., 5 (1959), 193–208.
[3] J. C., Crocker. Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres. J. Chem. Phys., 106 (1997), 2837–2840.
[4] J.-C, Meiners and S. R., Quake. Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys. Rev. Lett., 82 (1999), 2211–2214.
[5] M, Brunner, J, Dobnikar, H.-H, von Gruenberg, and C, Bechinger. Direct measurement of three-body interactions amongst charged colloids. Phys. Rev. Lett., 92 (2004), 078301 1–4.
[6] W. G., Hoover and F. H., Ree. Melting transition and communal entropy for hard spheres. J. Chem. Phys., 49 (1968), 3609–3617.
[7] P. Y., Cheng and H. K., Schachman. Studies on the validity of the Einstein viscosity law and Stokes' law of sedimentation. J. Polymer Sci., 16 (1955), 19–31.
[8] P. N., Pusey and W., Megen. Measurement of the short-time self-mobility of particles in concentrated suspension. Evidence for many-particle hydrodynamic interactions. J. Physique, 44 (1983), 285–291.
[9] A., Veluwen, H. N., W.|Lekkerkerker, C. G., Kruif, and A., Vrij. Measurement of the short-time self-diffusion coefficient in dilute and concentrated suspensions: Influence of direct particle interactions. J. Chem. Phys., 87 (1987), 4873–4880.
[10] V, Degiorgio, R, Piazza, and R. B., Jones. Rotational diffusion in concentrated colloidal dispersions of hard spheres. Phys. Rev. E, 52 (1995), 2707–2717.
[11] A., Blaaderen, J, Peetermans, G, Maret, and J. K. G., Dhont. Long-time selfdiffusion of spherical colloidal particles measured with fluorescence recovery after photobleaching. J. Chem. Phys., 96 (1992), 4591–4603.
[12] M. M., Kops-Werkhoven, C., Pathmamanoharan, A., Vrij, and H. M., Fijnaut. Concentration-dependence of the self-diffusion coefficient of hard, spherical-particles measured with photon-correlation spectroscopy. J. Chem. Phys., 77 (1982), 5913–5922; also M. M. Kops-Werkhoven. Unpublished D.Sc. Thesis, Rijksuniversiteit Te Utrecht (1982).
[13] W., Megen, S. M., Underwood, and I., Snook. Tracer diffusion in concentrated colloidal dispersions. J. Chem. Phys., 85 (1986), 4065–4072.
[14] W., Megen and S. M., Underwood. Tracer diffusion in concentrated colloidal dispersions. II. Non-Gaussian effects. J. Chem. Phys., 88 (1988), 7841–7846.
[15] W., Megen and S. M., Underwood. Motions of particles in concentrated dispersions as observed by dynamic light scattering. Langmuir, 6 (1990), 35–42.
[16] A., Imhof, A., Blaaderen, G., Maret, J., Mellema, and J. K. G., Dhont. A comparison between the long-time self-diffusion and low shear viscosity of concentrated dispersions of charged colloidal silica spheres. J. Chem. Phys., 100 (1994), 2170–2181.
[17] G. H., Koenderinck and A. P., Philipse. Rotational and translational self-diffusion in colloidal sphere suspensions and the applicability of generalized Stokes–Einstein relations. Langmuir, 16 (2001), 5631–5638.
[18] M. H., Blees, J. M., Geurts, and J. C., Leyte. Self-diffusion of charged polybutadiene latex particles in water measured by pulsed field gradient NMR. Langmuir, 12 (1996), 1947–1957.
[19] A., Brands, H., Versmold, and W., Megen. Tracer particle diffusion in crystal-like ordered colloidal suspensions. J. Chem. Phys., 110 (1999), 1283–1289.
[20] M. M., Kops-Werkhoven and H. M., Fijnaut. Dynamic light scattering and sedimentation experiments on silica dispersions at finite concentrations. J. Chem. Phys., 74 (1981), 1618–1625.
[21] H. J., Mos, C., Pathmamanoharan, J. K. G., Dhont, and C. G., Kruif. Scattered light intensity cross correlation. II. Experimental. J. Chem. Phys., 84 (1986), 45–49.
[22] G. D. J., Phillies. Suppression of multiple scattering effects in quasi-elastic light scattering by homodyne cross-correlation techniques. J. Chem. Phys., 74 (1981), 260–262.
[23] G. D. J., Phillies. Experimental demonstration of multiple-scattering suppression in quasielastic-light-scattering by homodyne coincidence techniques. Phys. Rev. A, 24 (1981), 1939–1943.
[24] P. N., Segre, O. P., Behrend, and P. N., Pusey. Short-time Brownian motion in colloidal suspensions: Experiment and simulation. Phys. Rev. E, 52 (1995), 5070–5083.
[25] P. N., Segre and P. N., Pusey. Scaling of the dynamic scattering function of concentrated colloidal suspensions. Phys. Rev. Lett., 77 (1996), 771–774.
[26] P. N., Segre, S. P., Meeker, P. N., Pusey, and W. C. K., Poon. Viscosity and structural relaxation in suspensions of hard-sphere colloids. Phys. Rev. Lett., 75 (1995), 958–961.
[27] M., Delsanti, J., Chang, P., Lesieur, and B., Cabane. Dynamic properties of aqueous dispersions of nanometric particles near the fluid-solid transition. J. Chem. Phys., 105 (1996), 7200–7209.
[28] G., Bueldt. Interpretation of quasi-elastic light scattering measurements from moderately concentrated solutions. Eur. Polym. J., 12 (1976), 239–242.
[29] R., Brown. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag., 4 (1828), 161–173.
[30] J., Perrin. Brownian motion and molecular reality. Annales de Chimie et de Physique, 18 (1909), 1–114.
[31] A., Kasper, E., Bartsch, and H., Sillescu. Self-diffusion in concentrated colloid suspensions studied by digital video microscopy of core-shell tracer particles. Langmuir, 14 (1998), 5004–5010.
[32] W. K., Kegel and A., Blaaderen. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science, 287 (2000), 290–293.
[33] E. R., Weeks, J. C., Crocker, A. W., Levitt, A., Schofield, and D. A., Weitz. Threedimensional direct imaging of structural relaxation near the colloidal glass transition. Science, 287 (2000), 627–631.
[34] E. R., Weeks and D. A., Weitz. Properties of cage rearrangements observed near the colloidal glass transition. Phys. Rev. Lett., 89 (2002), 095704 1–4.
[35] Y., Gao and M., Kilfoil. Direct imaging of dynamical heterogeneities near the colloid-gel transition. Phys. Rev. Lett., 99 (2007), 078301 1–4.
[36] W., Megen, S. M., Underwood, J., Muller, et al.Progr. Theor. Phys. Supp., 126 (1997), 171–180.
[37] S. C., Glotzer, V. N., Novikov, and T. B., Schroeder. Time-dependent, four-point density correlation function description of dynamical heterogeneity and decoupling in supercooled liquids. J. Chem. Phys., 112 (2000), 509–512.
[38] C., Donati, S. C., Glotzer, P. H., Poole, W., Kob, and S. J., Plimpton. Spatial correlations of mobility and immobility in a glass-forming Lennard–Jones liquid. Phys. Rev. E, 60, (1999), 3107–3119.
[39] N., Lacevic, F. W., Starr, T. B., Schroeder, V. N., Novikov, and S. C., Glotzer. Growing correlation length on cooling below the onset of caging in a simulated glass-forming liquid. Phys. Rev. E, 66 (2002), 030101(R).
[40] R., Piazza and V., Degiorgio. Rotational diffusion of hard spheres: Forward depolarized light-scattering measurements and comparison to theory and simulation. J. Phys.: Condens. Matt., 8 (1996), 9497–9502.
[41] M. P., Lettinga, C. M., Kats, and A. P., Philipse. Rotational diffusion of tracer spheres in packings and dispersions of colloidal spheres studied with time-resolved phosphorescence anisotropy. Langmuir, 16 (2000), 6166–6172.
[42] G. H., Koenderinck, H., Zhang, M. P., Lettinga, G., Naegele, and A. P., Philipse. Rotational tracer diffusion in binary colloidal sphere mixtures. Phys. Rev. E, 64 (2001), 022401 1–4.
[43] A., Toelle and H., Sillescu. Rotational diffusion of colloid spheres in suspension investigated by deuteron NMR.Langmuir, 10 (1994), 4420–4422.
[44] M., Delong and P. S., Russo. Particle size distribution by zero angle depolarized light scattering. In ACS Advances Series #227, Eds. C., Craver and T., Provder, (Washington, D.C.: American Chemical Society, 1990) 65–81.
[45] D., Kivelson and P. A., Madden. Light scattering studies of molecular liquids. Ann. Rev. Phys. Chem., 31 (1980), 523–558.
[46] G. K., Batchelor. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech., 83 (1977), 97–117.
[47] A. R., Altenberger and J. S., Dahler. A renormalization group calculation of the viscosity of a hard-sphere suspension. J. Coll. Interf. Sci., 189 (1997), 379–381.
[48] A. R., Altenberger and J. S., Dahler. Application of a new renormalization group to the equation of state of a hard-sphere fluid. Phys. Rev. E, 54 (1996), 6242–6252.
[49] I. M., Schepper, E. G. D., Cohen, and R., Verberg. Comment on “Viscosity and structural relaxation in suspensions of hard-sphere colloids.” Phys. Rev. Lett., 77 (1996), 584.
[50] S.-E., Phan, W. B., Russel, Z., Cheng, et al.Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions. Phys. Rev. E, 54 (1996), 6633–6645.
[51] S. P., Meeker, W. C. K., Poon, and P. N., Pusey. Concentration dependence of the low-shear viscosity of suspensions of hard-sphere colloids. Phys. Rev. E, 55 (1997), 5718–5722.
[52] J. C., der Werff and C. G., Kruif. Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate. J. Rheol., 33 (1989), 421–454.
[53] C. G., Kruif, E. M. F., Iersel, A., Vrij, and W. B., Russel. Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction. J. Chem. Phys., 83 (1985), 4717–4725.
[54] W. C. K., Poon, S. P., Meeker, P. N., Pusey, and P. N., Segre. Viscosity and structural relaxation in concentrated hard-sphere colloids. J. Non-Newtonian Fluid Mech., 67(1996), 179–189.
[55] D. A. R., Jones, B., Leary, and D. V., Boger. The rheology of a concentrated colloidal suspension of hard spheres. J. Colloid Interf. Sci., 147 (1991), 479–495.
[56] M., Marshall and C. F., Zukowski, IV. Experimental studies on the rheology of hardsphere suspensions near the glass transition. J. Phys. Chem., 94 (1990), 1164–1171.
[57] J. D., Lee, J.-H., So, and S.-M., Yang. Rheological behavior and stability of concentrated silica suspensions. J. Rheol., 43 (1999), 1117–1140.
[58] G. D. J., Phillies. Polymer solution viscoelasticity from two-parameter temporal scaling. J. Chem. Phys., 110 (1999), 5989–5992.
[59] T., Shikata and D. S., Pearson. Viscoelastic behavior of concentrated spherical suspensions. J. Rheol., 38 (1994), 601–616.
[60] M., Antonietti, T., Pakula, and W., Bremser. Rheology of small spherical polystyrene microgels: A direct proof for a new transport mechanism in bulk polymers besides reptation. Macromolecules, 28 (1995), 4227–4233.
[61] M., Tokuyama and I., Oppenheim. On the theory of concentrated hard-sphere suspensions. Physica A, 216 (1995), 85–119.
[62] M., Tokuyama. Self-diffusion in multi-component glass-forming systems. Physica A, 388 (2009), 3083–3092.
[63] G. D. J., Phillies. Observations upon the dynamic structure factor of interacting spherical polyelectrolytes. J. Chem. Phys., 79 (1983), 2325–2332.
[64] P., Doherty and G. B., Benedek. Effect of electric charge on diffusion of macromolecules. J. Chem. Phys., 61 (1974), 5426–5434.
[65] G. D. J., Phillies. Effect of intermacromolecular interactions on diffusion. I. Twocomponent solutions. J. Chem. Phys., 60 (1974), 976–982.
[66] G. D. J., Phillies. Effect of intermacromolecular interactions on diffusion. II. Threecomponent solutions. J. Chem. Phys., 60 (1974), 983–989.
[67] G. D. J., Phillies. Effect of intermacromolecular interactions on diffusion. III. Electrophoresis in three-component solutions. J. Chem. Phys., 59 (1973), 2613–2617.
[68] G. D. J., Phillies. Fluorescence correlation spectroscopy and non-ideal solutions. Biopolymers, 14 (1975), 499–508.
[69] V. G., Taratuta, A., Holschbach, G. M., Thurston, A., Blankschtein, and G. B., Benedek. Liquid–liquid phase separation of aqueous lysozyme solutions: Effects of pH and salt identity. J. Chem. Phys., 94 (1990), 2140–2144.
[70] G. D. J., Phillies. Comment on “Critical behavior of a binary mixture of protein and salt water.” Phys. Rev. Lett., 55 (1985), 1341.
[71] M., Muschol and F., Rosenberger. Liquid–liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys., 107 (1997), 1953–1962.