References[1] W. H., Stockmayer. Dielectric dispersion in solutions of flexible polymers. Pure Appl. Chem., 15 (1967), 539–554.
[2] K., Adachi, H., Hirano, and J. J., Freire. Dielectric study of dynamics of subchains and distribution of normal mode relaxation times in dilute and semidilute solutions of miscible block copolymers. Polymer, 40 (1999), 2271–2279.
[3] H., Watanabe. Dielectric relaxation of type-A polymers in melts and solutions. Macromol. Rapid Commun., 22 (2001), 127–175.
[4] K., Adachi, H., Okazaki, and T., Kotaka. Application of scaling laws to the dielectric normal mode process of cis-polyisoprene in solutions of infinite dilution to the bulk. Macromolecules, 18 (1985), 1687–1692.
[5] H.-H., Stockmayer and M. E., Baur. Low-frequency electrical response of flexible chain molecules. J. Am. Chem. Soc., 88 (1964), 3485–3489.
[6] K., Adachi and T., Kotaka. Dielectric normal mode process in semidilute and concentrated solutions of cis-polyisoprene. Macromolecules, 21 (1988), 157–164.
[7] K., Adachi, Y., Imanishi, T., Shinkado, and T., Kotaka. Dielectric study of the concentration dependence of the end-to-end distance and normal-mode relaxation time of polyisoprene in moderately good solvents. Macromolecules, 22 (1989), 2391–2395.
[8] O., Urakawa, K., Adachi, and T., Kotaka. Dielectric normal mode relaxation of probe polyisoprene chain in semidilute polybutadiene solutions. 1. End-to-end distances. Macromolecules, 26 (1993), 2036–2041.
[9] O., Urakawa, K., Adachi, and T., Kotaka. Dielectric normal mode relaxation of probe polyisoprene chain in semidilute polybutadiene solutions. 2. Dynamic behavior. Macromolecules, 26 (1993), 2042–2049.
[10] J., Ren, O., Urakawa, and K., Adachi. Dielectric study on dynamics and conformation of poly(D,L-lactic acid) in dilute and semidilute solutions. Polymer, 44 (2003), 847–855.
[11] Y., Miyaki, Y., Einaga, and H., Fujita. Excluded volume effects in dilute polymer solutions. 7. Very high molecular weight polystyrene in benzene and cyclohexane. Macromolecules, 11 (1978), 1180–1186.
[12] M., Fukuda, M., Fukutomi, Y., Kato, and T., Hashimoto. Solution properties of high molecular weight polystyrene. J. Polym. Sci.: Polym. Phys. Ed., 12 (1974), 871–890.
[13] A., Yamamoto, M., Fujii, G., Tanaka, and H., Yamakawa. More on the analysis of dilute solution data: Polystyrenes prepared anionically in tetrahydrofuran. Polym. J., 2 (1971), 799–811.
[14] B., Appelt and G., Meyerhoff. Characterization of polystyrenes of extremely high molecular weights. Macromolecules, 13 (1980), 657–662.
[15] N. S., Davidson, L. J., Fetters, W. G., Funk, N., Hadjichristidis, and W. W., Graessley. Measurement of chain dimensions in dilute polymer solutions: A light scattering and viscometric study of linear polyisoprene in cyclohexane. Macromolecules, 20 (1987), 2614–2619.
[16] M. E., Lewis, S., Nan, and J. W., Mays. Hydrodynamic properties of polystyrene in dilute n-butyl chloride solution. Macromolecules, 24 (1991), 197–200.
[17] K., Venkataswamy, A. M., Jamieson, and R. G., Petschek. Static and dynamic properties of polystyrene in good solvents: ethylbenzene and tetrahydrofuran. Macromolecules, 19 (1986), 124–133.
[18] T. P., Lodge, K. C., Hermann, and M. R., Landry. Coil dimensions of polystyrenes in isorefractive viscous solvents by small-angle neutron scattering. Macromolecules, 19 (1986), 1996–2002.
[19] W., Bushuk and H., Benoit. Light scattering studies of copolymers. I. Effect of heterogeneity of chain composition on the molecular weight. Can. J. Chem., 36 (1958), 1616–1626.
[20] R., Tremblay, M., Rinfret, and R., Rivest. Light scattering by GR-S solutions. J. Chem. Phys., 20 (1958), 523.
[21] R., Kuhn, H.-J., Cantow, and W., Burchard. Zur unvertraeglichkeit von polymergemischen. 1. Lichtstreuungsmessungen am system polystyrol/polymethylmethacrylat/benzol. Angew. Makromolekulare Chem., 2 (1968), 146–156.
[22] R., Kuhn, H.-J., Cantow, and W., Burchard. Zur unvertraeglichkeit von polymergemischen. 2. Truebungsmessungen am system polystyrol/polymethylmethacrylat/benzol. Angew. Makromolekulare Chem., 2 (1968), 157–164.
[23] R., Kuhn and H.-J., Cantow. Zur unvertraeglichkeit von polymergemischen. 3. Lichtstreuungsmessungen an hochmolekularen polystyrolen in polymethylmethacrylat/benzol. Makromolekulare Chem., 122 (1969), 65–81.
[24] C.-Y., Lin and S. L., Rosen. Light-scattering studies on polystyrenes in isorefractive poly(methyl methacrylate)-toluene “solvents.”J. Polym. Sci.: Polym. Phys. Ed., 20 (1982), 1497–1502.
[25] M., Daoud, J. P., Cotton, B., Farnoux, et al. Solutions of flexible polymers. Neutron experiments and interpretation. Macromolecules, 8 (1975), 804–818.
[26] J. S., King, W., Boyer, G. D., Wignall, and R., Ullman. Radii of gyration and screening lengths of polystyrene in toluene as a function of concentration. Macromolecules, 18 (1985), 709–718.
[27] C. E., Williams, M., Nierlich, J. P., Cotton, et al. Polyelectrolyte solutions: Intrachain and interchain correlations observed by SANS. J. Polym. Sci.: Polym. Lett. Ed., 17 (1979), 379–384.
[28] A. Z., Akcasu, G. C., Summerfield, S. N., Jahshan, et al. Measurement of single chain neutron-scattering in concentrated polymer-solutions. J. Polym. Sci. B-Polym. Phys., 28 (1990), 863–869.
[29] S. N., Jahshan and G. C., Summerfield. Extracting single-chain characteristics from neutron and X-ray-scattering experiments. J. Polym. Sci. B-Polym. Phys., 18 (1980), 1859–1861.
[30] K., Adachi and T., Kotaka. Dielectric normal mode process in dilute solutions of cis-polyisoprene. Macromolecules, 20 (1987), 2018–2023.
[31] K., Adachi, Y., Imanishi, and T., Kotaka. Dielectric relaxation in concentrated solutions of cis-isoprene, Part 1. Effect of entanglement on the normal-mode process. J. Chem. Soc. Faraday Trans. 1, 85 (1989), 1065–1074.
[32] K., Adachi, Y., Imanishi, and T., Kotaka. Dielectric relaxation in concentrated solutions of cis-isoprene, Part 2. Motions of local segments and solvent molecules. J. Chem. Soc. Faraday Trans. 1, 85 (1989), 1075–1082.
[33] K., Adachi, Y., Imanishi, and T., Kotaka. Dielectric relaxation in concentrated solutions of cis-isoprene, Part 3. Relationship between friction coefficient for dielectric normalmode process and local segmental motions. J. Chem. Soc. Faraday Trans. 1, 85 (1989), 1083–1089.
[34] O., Urakawa, K., Adachi, T., Kotaka, Y., Takemoto, and H., Yasuda. Dielectric normal mode relaxation of poly(lactone)s in solution. Macromolecules, 27 (1994), 7410–7414.
[35] H., Watanabe, O., Urakawa, and T., Kotaka. Slow dielectric relaxation of entangled linear cis-polyisoprenes with asymmetrically inverted dipoles. 1. Bulk systems. Macromolecules, 26 (1993), 5073–5083.
[36] H., Watanabe, O., Urakawa, and T., Kotaka. Slow dielectric relaxation of entangled linear cis-polyisoprenes with asymmetrically inverted dipoles. 2. Behavior in a short matrix. Macromolecules, 27 (1994), 3525–3536.
[37] H., Watanabe, H., Yamada, and O., Urakawa. Dielectric relaxation of dipole-inverted cis-polyisoprene solutions. Macromolecules, 28 (1995), 6443–6453.
[38] O., Urakawa and H., Watanabe. Dielectric relaxation of dipole-inverted cis-polyisoprenes in solutions: Concentration dependence of the second-mode relaxation time. Macromolecules, 30 (1997), 652–654.
[39] K., Adachi, I., Nishi, H., Doi, and T., Kotaka. Study of subchain dynamics by dielectric normal-mode spectroscopy: Butadiene-isoprene block copolymers. Macromolecules, 24 (1991), 5843–5850.
[40] P. E., Rouse Jr., A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys., 21 (1953), 1272–1280.
[41] B. H., Zimm. Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence, and dielectric loss. J. Chem. Phys., 24 (1956), 269–278.
[42] E. B., Wilson, J. C., Decius, and P. C., Cross. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, (New York, NY: McGraw-Hill, 1955).
[43] D. F., McIntosh, K. H., Michaelian, and M. R., Peterson. A consistent derivation of the Wilson–Decius s vectors, including new out-of-plane wag formulae. Can. J. Chem., 56 (1978), 1289–1295.
[44] J. G., Kirkwood and J., Riseman. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys., 16 (1958), 565–573.