Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: August 2012

7 - Dielectric relaxation and chain dimensions

Summary

Introduction

A characteristic feature of many molecules and chemical bonds is an electric dipole moment whose orientation is substantially fixed as viewed in internal molecular coordinates. Dielectric spectroscopy observes the temporal evolution of net polarization induced in these dipole moments by an applied electrical field. It was first noted by Stockmayer(1) that polymer chain dipoles may be grouped into three classes, namely: (A) dipoles that point along the polymer backbone, so that in the simplest cases the dipoles are relaxed by (i) reorientation of the polymer end-to-end vector r, and (ii) breathing modes that changes the vector's length; (B) dipoles that point perpendicular to the polymeric backbone, so that they are relaxed via crankshaft-like motions of the backbone; and (C) dipoles associated with polymeric side groups that are relaxed via rotation of the side groups around the bond axis linking the side groups to the backbone. Type-A dipoles may be in turn divided into two classes, namely (i) polymers in which the dipolar units are linked head to tail, so that the total dipole vector and the end-to-end vector are necessarily linearly proportional, and (ii) polymers in which the dipole is associated with only part of the polymeric repeat unit, so that the total dipole vector and the end-to-end vector may fluctuate with respect to each other. Class C dipoles generally relax the most quickly, while class A dipoles relax the most slowly.

References
[1] W. H., Stockmayer. Dielectric dispersion in solutions of flexible polymers. Pure Appl. Chem., 15 (1967), 539–554.
[2] K., Adachi, H., Hirano, and J. J., Freire. Dielectric study of dynamics of subchains and distribution of normal mode relaxation times in dilute and semidilute solutions of miscible block copolymers. Polymer, 40 (1999), 2271–2279.
[3] H., Watanabe. Dielectric relaxation of type-A polymers in melts and solutions. Macromol. Rapid Commun., 22 (2001), 127–175.
[4] K., Adachi, H., Okazaki, and T., Kotaka. Application of scaling laws to the dielectric normal mode process of cis-polyisoprene in solutions of infinite dilution to the bulk. Macromolecules, 18 (1985), 1687–1692.
[5] H.-H., Stockmayer and M. E., Baur. Low-frequency electrical response of flexible chain molecules. J. Am. Chem. Soc., 88 (1964), 3485–3489.
[6] K., Adachi and T., Kotaka. Dielectric normal mode process in semidilute and concentrated solutions of cis-polyisoprene. Macromolecules, 21 (1988), 157–164.
[7] K., Adachi, Y., Imanishi, T., Shinkado, and T., Kotaka. Dielectric study of the concentration dependence of the end-to-end distance and normal-mode relaxation time of polyisoprene in moderately good solvents. Macromolecules, 22 (1989), 2391–2395.
[8] O., Urakawa, K., Adachi, and T., Kotaka. Dielectric normal mode relaxation of probe polyisoprene chain in semidilute polybutadiene solutions. 1. End-to-end distances. Macromolecules, 26 (1993), 2036–2041.
[9] O., Urakawa, K., Adachi, and T., Kotaka. Dielectric normal mode relaxation of probe polyisoprene chain in semidilute polybutadiene solutions. 2. Dynamic behavior. Macromolecules, 26 (1993), 2042–2049.
[10] J., Ren, O., Urakawa, and K., Adachi. Dielectric study on dynamics and conformation of poly(D,L-lactic acid) in dilute and semidilute solutions. Polymer, 44 (2003), 847–855.
[11] Y., Miyaki, Y., Einaga, and H., Fujita. Excluded volume effects in dilute polymer solutions. 7. Very high molecular weight polystyrene in benzene and cyclohexane. Macromolecules, 11 (1978), 1180–1186.
[12] M., Fukuda, M., Fukutomi, Y., Kato, and T., Hashimoto. Solution properties of high molecular weight polystyrene. J. Polym. Sci.: Polym. Phys. Ed., 12 (1974), 871–890.
[13] A., Yamamoto, M., Fujii, G., Tanaka, and H., Yamakawa. More on the analysis of dilute solution data: Polystyrenes prepared anionically in tetrahydrofuran. Polym. J., 2 (1971), 799–811.
[14] B., Appelt and G., Meyerhoff. Characterization of polystyrenes of extremely high molecular weights. Macromolecules, 13 (1980), 657–662.
[15] N. S., Davidson, L. J., Fetters, W. G., Funk, N., Hadjichristidis, and W. W., Graessley. Measurement of chain dimensions in dilute polymer solutions: A light scattering and viscometric study of linear polyisoprene in cyclohexane. Macromolecules, 20 (1987), 2614–2619.
[16] M. E., Lewis, S., Nan, and J. W., Mays. Hydrodynamic properties of polystyrene in dilute n-butyl chloride solution. Macromolecules, 24 (1991), 197–200.
[17] K., Venkataswamy, A. M., Jamieson, and R. G., Petschek. Static and dynamic properties of polystyrene in good solvents: ethylbenzene and tetrahydrofuran. Macromolecules, 19 (1986), 124–133.
[18] T. P., Lodge, K. C., Hermann, and M. R., Landry. Coil dimensions of polystyrenes in isorefractive viscous solvents by small-angle neutron scattering. Macromolecules, 19 (1986), 1996–2002.
[19] W., Bushuk and H., Benoit. Light scattering studies of copolymers. I. Effect of heterogeneity of chain composition on the molecular weight. Can. J. Chem., 36 (1958), 1616–1626.
[20] R., Tremblay, M., Rinfret, and R., Rivest. Light scattering by GR-S solutions. J. Chem. Phys., 20 (1958), 523.
[21] R., Kuhn, H.-J., Cantow, and W., Burchard. Zur unvertraeglichkeit von polymergemischen. 1. Lichtstreuungsmessungen am system polystyrol/polymethylmethacrylat/benzol. Angew. Makromolekulare Chem., 2 (1968), 146–156.
[22] R., Kuhn, H.-J., Cantow, and W., Burchard. Zur unvertraeglichkeit von polymergemischen. 2. Truebungsmessungen am system polystyrol/polymethylmethacrylat/benzol. Angew. Makromolekulare Chem., 2 (1968), 157–164.
[23] R., Kuhn and H.-J., Cantow. Zur unvertraeglichkeit von polymergemischen. 3. Lichtstreuungsmessungen an hochmolekularen polystyrolen in polymethylmethacrylat/benzol. Makromolekulare Chem., 122 (1969), 65–81.
[24] C.-Y., Lin and S. L., Rosen. Light-scattering studies on polystyrenes in isorefractive poly(methyl methacrylate)-toluene “solvents.”J. Polym. Sci.: Polym. Phys. Ed., 20 (1982), 1497–1502.
[25] M., Daoud, J. P., Cotton, B., Farnoux, et al. Solutions of flexible polymers. Neutron experiments and interpretation. Macromolecules, 8 (1975), 804–818.
[26] J. S., King, W., Boyer, G. D., Wignall, and R., Ullman. Radii of gyration and screening lengths of polystyrene in toluene as a function of concentration. Macromolecules, 18 (1985), 709–718.
[27] C. E., Williams, M., Nierlich, J. P., Cotton, et al. Polyelectrolyte solutions: Intrachain and interchain correlations observed by SANS. J. Polym. Sci.: Polym. Lett. Ed., 17 (1979), 379–384.
[28] A. Z., Akcasu, G. C., Summerfield, S. N., Jahshan, et al. Measurement of single chain neutron-scattering in concentrated polymer-solutions. J. Polym. Sci. B-Polym. Phys., 28 (1990), 863–869.
[29] S. N., Jahshan and G. C., Summerfield. Extracting single-chain characteristics from neutron and X-ray-scattering experiments. J. Polym. Sci. B-Polym. Phys., 18 (1980), 1859–1861.
[30] K., Adachi and T., Kotaka. Dielectric normal mode process in dilute solutions of cis-polyisoprene. Macromolecules, 20 (1987), 2018–2023.
[31] K., Adachi, Y., Imanishi, and T., Kotaka. Dielectric relaxation in concentrated solutions of cis-isoprene, Part 1. Effect of entanglement on the normal-mode process. J. Chem. Soc. Faraday Trans. 1, 85 (1989), 1065–1074.
[32] K., Adachi, Y., Imanishi, and T., Kotaka. Dielectric relaxation in concentrated solutions of cis-isoprene, Part 2. Motions of local segments and solvent molecules. J. Chem. Soc. Faraday Trans. 1, 85 (1989), 1075–1082.
[33] K., Adachi, Y., Imanishi, and T., Kotaka. Dielectric relaxation in concentrated solutions of cis-isoprene, Part 3. Relationship between friction coefficient for dielectric normalmode process and local segmental motions. J. Chem. Soc. Faraday Trans. 1, 85 (1989), 1083–1089.
[34] O., Urakawa, K., Adachi, T., Kotaka, Y., Takemoto, and H., Yasuda. Dielectric normal mode relaxation of poly(lactone)s in solution. Macromolecules, 27 (1994), 7410–7414.
[35] H., Watanabe, O., Urakawa, and T., Kotaka. Slow dielectric relaxation of entangled linear cis-polyisoprenes with asymmetrically inverted dipoles. 1. Bulk systems. Macromolecules, 26 (1993), 5073–5083.
[36] H., Watanabe, O., Urakawa, and T., Kotaka. Slow dielectric relaxation of entangled linear cis-polyisoprenes with asymmetrically inverted dipoles. 2. Behavior in a short matrix. Macromolecules, 27 (1994), 3525–3536.
[37] H., Watanabe, H., Yamada, and O., Urakawa. Dielectric relaxation of dipole-inverted cis-polyisoprene solutions. Macromolecules, 28 (1995), 6443–6453.
[38] O., Urakawa and H., Watanabe. Dielectric relaxation of dipole-inverted cis-polyisoprenes in solutions: Concentration dependence of the second-mode relaxation time. Macromolecules, 30 (1997), 652–654.
[39] K., Adachi, I., Nishi, H., Doi, and T., Kotaka. Study of subchain dynamics by dielectric normal-mode spectroscopy: Butadiene-isoprene block copolymers. Macromolecules, 24 (1991), 5843–5850.
[40] P. E., Rouse Jr., A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys., 21 (1953), 1272–1280.
[41] B. H., Zimm. Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence, and dielectric loss. J. Chem. Phys., 24 (1956), 269–278.
[42] E. B., Wilson, J. C., Decius, and P. C., Cross. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, (New York, NY: McGraw-Hill, 1955).
[43] D. F., McIntosh, K. H., Michaelian, and M. R., Peterson. A consistent derivation of the Wilson–Decius s vectors, including new out-of-plane wag formulae. Can. J. Chem., 56 (1978), 1289–1295.
[44] J. G., Kirkwood and J., Riseman. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys., 16 (1958), 565–573.