Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T22:11:23.238Z Has data issue: false hasContentIssue false

3 - Mean field theories

Published online by Cambridge University Press:  13 August 2009

Akira Onuki
Affiliation:
Kyoto University, Japan
Get access

Summary

In this chapter we will introduce the simplest theory of phase transitions, the Landau theory [1]–[4]. It assumes a free energy H(ψ), called the Landau free energy, which depends on the order parameter ψ as well as the temperature and the magnetic field. The thermodynamic free energy F is the minimum of H(ψ) as a function of ψ. This minimization procedure gives rise to the mean field critical behavior. Historically, a number of mean field theories have been presented to explain phase transitions in various systems. They reduce to the Landau theory near the critical point. Examples we will treat are the Bragg–Williams theory [5] for Ising spin systems and alloys undergoing order–disorder phase transitions, the van der Waals theory of the gas-liquid transition [6], the Flory–Huggins theory and the classical rubber theory for polymers and gels. We will also discuss tricritical phenomena in the scheme of the Landau theory. In Appendix 3A elastic theory for finite strain will be considered, which will be needed to understand the volume-phase transition in gels.

Landau theory

Order parameter and constrained free energy

It is desirable to sum up the spin configurations in (1.1.9) to exactly determine the thermodynamic limit. This attempt has not been successful for the 3D Ising model, while it was successful for 2D and is a simple exercise for 1D [3].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mean field theories
  • Akira Onuki, Kyoto University, Japan
  • Book: Phase Transition Dynamics
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511534874.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mean field theories
  • Akira Onuki, Kyoto University, Japan
  • Book: Phase Transition Dynamics
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511534874.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mean field theories
  • Akira Onuki, Kyoto University, Japan
  • Book: Phase Transition Dynamics
  • Online publication: 13 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511534874.004
Available formats
×