Skip to main content Accessibility help
×
  • Cited by 3
Publisher:
Cambridge University Press
Online publication date:
November 2017
Print publication year:
2017
Online ISBN:
9781316650394

Book description

This original text develops a deep, conceptual understanding of thermal physics, highlighting the important links between thermodynamics and statistical physics, and examining how thermal physics fits within physics as a whole, from an empirical perspective. The first part of the book is devoted to elementary, mesoscopic topics such as Brownian motion, which leads to intuitive uses of large deviation theory, one of the pillars of modern probability theory. The book then introduces the key concepts behind statistical thermodynamics, and the final part describes more advanced and applied topics from thermal physics such as phase transitions and critical phenomena. This important subject is presented from a fresh perspective and in a highly pedagogical manner, with numerous worked examples and relevant cultural side notes throughout, making it ideal as either a textbook for advanced thermal physics courses or for self-study by undergraduate and graduate students in physics and engineering.

Reviews

'This is a delightful book quite different from most textbooks. It will be enjoyed by teachers, students and researchers.'

Joel Lebowitz - Rutgers University

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


Bibliography
Gallavotti, G. (1999). Statistical Mechanics: A Short Treatise. Berlin: Springer.
Kubo, R., Ichimura, H., and Hashitsume, N. (1961). Thermodynamics and Statistical Mechanics. Tokyo: Shokabo.
Landau, L. D. and Lifshitz, E. M. (2013). Statistical Physics. Part 1. 3rd edition. Oxford: Butterworth-Heinemann.
Nakano, H. and Kimura, H. (1988). Statistical Thermodynamics of Phase Transitions. Tokyo: Asakura Shoten.
Peliti, L. (2011). Statistical Mechanics in a Nutshell. Princeton: Princeton University Press.
Tasaki, H. (2000). Thermodynamics. Tokyo: Baifukan.
Tasaki, H. (2008). Statistical Mechanics I. Tokyo: Baifukan.
Tasaki, H. (2008). Statistical Mechanics II. Tokyo: Baifukan.
Tasaki, H. and Hara, T. (2015). Mathematics of Phase Transitions and Critical Phenomena. Tokyo: Kyoritsu Publ.
Shimizu, A. (2007). Principles of Thermodynamics. Tokyo: University of Tokyo Press.
Akhiezer, N. I. and Glazman, I. M. (2013). Theory of Linear Operators in Hilbert Space. Dover Books on Mathematics. Mineola, NY: Dover Publications.
Anderson, P. W. (1984). Basic Notions of Condensed Matter Physics. Boulder: Westview Press.
Andreas, B., Azuma, Y., Bartl, G. et al. (2011). Determination of the Avogadro constant by counting the atoms in a Si crystal, Physics Review Letters, 106 (3): 030801.
Berryman, S. (2011). Ancient Atomism. In The Stanford Encyclopedia of Philosophy. (Winter 2011 Edition). ed. E. N. Zalta, available online at http://plato.stanford.edu/ archives/win2011/entries/atomism-ancient/Bionumbers (the database of useful biological numbers) available online at http://bionumbers.hms.harvard.edu/default.aspx.
Boltzmann, L. (1877). Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechinung respective den Sätzen über Wärmegleichgewicht, Wiener Berichte, 76, 373–435.
Borovkov, A. A., Golovanov, P. P., and Ya Kozlov, V. et al. (1969). Ivan Nikolaevich Sanov (Obituary), Russian Mathematical Surveys, 24, 4, 159.
Braun, K. F. (1888). Über einen allgemeinen qualitativen Satz für Zustandsanderumgen nebst einigen sick anschliessenden Bemerkungen. insbesondere über nicht eindeutige Systeme, Annalen der Physik, 269, 337–353.
Broda, E. (1955). Ludwig Boltzmann. Mensch, Physiker, Philosoph. Wien: F. Deuticke.
Brown, P. C., Roediger III, H. L. and McDaniel, M. A. (2014). Make it Stick: The Science of Successful Learning. Cambridge (MA): The Belknap Press.
Browne, J. (1995). Charles Darwin: Voyaging. New York: Knopf.
Browne, J. (2002). Charles Darwin: The Power of Place. New York: Knopf.
Brush, S. G. (1968a). On Mach's atomism, Synthese. 18, 192–215.
Brush, S. G. (1968b). A history of random processes: I Brownian movement from Brown to Perrin, Archive of History of Exact Science, 5, 1–36.
Brush, S. G. (1983). Statistical Physics and the Atomic Theory of Matter: From Boyle and Newton to Landau and Onsager. Princeton: Princeton University Press.
Cercignani, C. (2001). The rise of statistical mechanics, in Chance in Physics. Lecture Notes in Physics, 574, eds, J. Bricmont, D. Dürr, M. C. Gallavotti, G. C. Ghirardi, F. Petruccione, and N. Zanghi. Berlin: Springer. pp. 25–38.
Chaikin, P. M. and Lubensky, T. C. (1995). Principles of Condensed Matter Physics. Cambridge: Cambridge University Press.
Cover, T. M. and King, R. C. (1978). A convergent gambling estimate of the entropy of English, IEEE Transactions Information Theory, 24, 413–421.
Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. New York: Wiley.
Daussy, C. et al. (2007). Direct determination of the Boltzmann constant by an optical method, Physical Review Letters, 98, 250801.
de Heer, J. (1957). The principle of le Chatelier and Braun, Journal of Chemical Education, 34, 375–380.
Deng, Y. and Blöte, H. W. J. (2003). Simultaneous analysis of several models in the threedimensional Ising universality class, Physical Review E, 68, 036125 (9 pages).
Dirac, P. A. M. (1982). The Principles of Quantum Mechanics. Oxford: Clarendon Press.
Durrett, R. (1991). Probability: Theory and Examples. Pacific Grove: Wadsworth & Brooks/Cole.
Ebbinghaus, H.-D. (2007). Ernst Zermelo: An Approach to his Life and Work. Berlin: Springer.
Einstein, A. (1903). Eine Theorie der Grundlagen der Thermodynamik, Annalen der Physik, 316, 170–187.
Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Warme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik, 17, 549–560.
Einstein, A. (1910). Theorie der Opaleszenz von homogenen Flüssigkeitsgemischen in der Nähe des kritischen Zustandes, Annalen der Physik, 33, 1275–1298.
Einstein, A. (1917). Zur Quantentheorie der Strahlung, Physikalisches Zeitschrift, 18, 121–128.
Essam, J.W. and Sykes, M. F. (1963). The crystal statistics of the diamond lattice, Physica, 29, 378–388.
Feller, W. (1957). An Introduction to Probability Theory and its Applications. Volume 1. New York: Wiley.
Feller, W. (1971). An Introduction to Probability Theory and its Applications. Volume 2. New York: Wiley.
Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics. New Haven: Yale University Press.
Girardeau, M. D. and Mazo, R. M. (1973). Variational methods in statistical mechanics, in Advances in Chemical Physics. vol. 24, eds, I. Prigogine and S. A. Rice, New York: Academic Press, pp. 187–255.
Golomb, S. W., Berlekamp, E. R., Cover, T. M. et al. (2002). Claude Elwood Shannon (1916–2002). Notices of American Mathematical Society, 49, 8–16.
Graham, J. B. Aguilar, N., Dudley, R., and Gans, C. (1995). Implication of the late Paleozoic oxygen pulse for physiology and evolution. Nature, 375, 117–120.
Guggenheim, E. A. (1945). The principle of corresponding states, Journal of Chemical Physics, 13, 254–261.
Haag, R. (1996). Local Quantum Physics: Fields, Particles, Algebras. Second revised and enlarged edition, Berlin: Springer.
Havil, J. (2003). Gamma: Exploring Euler's Constant. Princeton: Princeton University Press.
Israel, R. B. (1979). Convexity in the Theory of Lattice Gases. Princeton: Princeton University Press.
Jarzynski, C. (1997). Nonequilibrium equality for free energy differences, Physical Review Letters, 78, 2690–2693.
Jarzynski, C. (2004). Nonequilibrium work theorem for a system strongly coupled to a thermal environment, Journal of Statistical Mechanics, 2004. P09005.
Jeans, J. (1952). An Introduction to the Kinetic Theory of Gases. Cambridge: Cambridge University Press.
Kadanoff, L. P. (1966). Scaling Laws for Ising Models near Tc. Physics, 2, 263–272.
Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. (2011). Bose–Einstein condensation of photons in an optical microcavity, Nature, 468, 545–548.
Kolmogorov, A. N. (2004; reprint of a book chapter in 1956). The theory of probability, Theory of Probability and its Applications, 48, 191–200.
Konvalina., J. (2000). A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients. American Mathematical Monthly, 107, 901– 910.
Körner, T. W. (1988). Fourier Analysis. Cambridge: Cambridge University Press.
Landau, L. D. and Lifshitz, E. M. (1982). Classical Mechanics. 3rd edition. Oxford: Butterworth-Heinemann.
Landau, L. D. and Lifshitz, E. M. (1987). Fluid Mechanics. 2nd edition. Oxford: Butterworth-Heinemann.
Landsberg, P. T. (1972). The fourth law of thermodynamics, Nature, 238, 229–231.
Langevin, P. (1908). Sur la théorie du mouvement brownien, Comptes Rendus de l'Académie des Sciences, 146, 530–533.
Le Chatelier, H. L. (1884). Sur un énoncé général des lois des équilibres chimiques. Comptes Rendus de l'Académie des Sciences, 99, 786–789.
Lemons, D. S. and Gythiel, A. (1997). Paul Langevin's 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien.” Comptes Rendus de l'Académie des Sciences. 146, 530–533 (1908], American Journal of Physics, 65, 1079– 1081.
Lenard, A. (1978). Thermodynamical proof of the Gibbs formula for elementary quantum systems, Journal of Statistical Physics, 19, 575–586.
Lenker, T. D. (1979). Caratheodory's concept of temperature, Synthese, 42, 167–171 (1979).
Lieb, E. H. and Seiringer, R. (2010). The Stability of Matter in Quantum Mechanics. Cambridge: Cambridge University Press.
Lindley, D. (2001). Boltzmann's Atom: The Great Debate that Launched a Revolution in Physics. New York: The Free Press.
Longuet-Higgins, C. and Fisher, M. E. (1995). Lars Onsager: November 27. 1903-October 5. 1976, Journal of Statistical Physics, 78, 605–640.
Maxwell, J. C. (1860). Illustrations of the dynamical theory of gases, Philosophical Magazine. 19 19–32; 20, 21–37.
McKean, H. (2014). Probability: The Classical Limit Theorems. Cambridge: Cambridge University Press.
Mendelssohn, K. (1973). The World of Walther Nernst: The Rise and Fall of German Science. 1864–1941 (ebook form from Plunket Lake Press, 2015).
Meulders, M. (2010). Helmholtz from Enlightenment to Neuroscience. Boston: MIT Press.
Mortici, C. (2011). On Gosper's formula for the gamma function, Journal of Mathematical Inequalities, 5, 611–614.
Mukamel, S. (2003). Quantum extension of the Jarzynski relation: Analogy with stochastic dephasing, Physical Review Letters, 90, 170604.
Niemeijer, Th. and van Leeuwen, J. M. J. (1973). Wilson theory for spin systems on a triangular lattice, Physical Review Letters, 31, 1411–1414.
Oono, Y. (1989). Large deviation and statistical physics, Progress of Theoretical Physics Supplement, 99, 165–205.
Oono, Y. (2013). The Nonlinear World. Tokyo: Springer.
Perrin, J. (1916). Atoms. London: Constable. translated by D. L. Hammick. Available online at: https://archive.org/details/atomsper00perruoft.
Priestley, H. A. (1990). Introduction to Complex Analysis. Oxford: Oxford University Press.
Rao, M. and Stetker, H. (1991). Complex Analysis: An Invitation. Singapore: World Scientific.
Rockafellar, R. R. (1970). Convex Analysis. Princeton: Princeton University Press.(since 1997 in the series Princeton Landmarks in Mathematics).
Rosenhouse, J. (2009). The Monty Hall Problem. Oxford: Oxford University Press.
Ruelle, D. (1999). Statistical Mechanics. Singapore: World Scientific (original 1969).
Ruelle, D. (2004). Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics. Cambridge: Cambridge University Press.(Cambridge Mathematical Library).
Russell, B. (1945). A History of Western Philosophy. London: Simon and Schuster.
Sagawa, T. (2013). Thermodynamics of Information Processing in Small Systems. Tokyo: Springer.
Sagawa, T. and Ueda, M. (2008). Second law of thermodynamics with discrete quantum feedback control, Physical Review Letters, 100, 080403.
Sagawa, T. and Ueda, M. (2009). Minimal energy cost for thermodynamic information processing: Measurement and information erasure, Physical Review Letters, 102, 250602.
Saito, N. (1967). Polymer Physics. Tokyo: Shokabo.
Sanov, I. N. (1957). On the probability of large deviations of random variables. Matematicheskii Sbornik, 42, 11–44.
Schlosshauser, M. and Fine, A. (2005). On Zurek's derivation of the Born rule, Foundation of Physics, 35, 197–213.
Seneta, E. (2013). Nonnegative Matrices and Markov Chains. 2nd edition Berlin: Springer.
Sender, R., Fuchs, S., and Milo, R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans, Cell, 164, 337–340.
Simon, B. (2015). A Comprehensive Course in Analysis, Part I Real Analysis. Providence: AMS, p. 384.
Sinai, Ya. G. (1982). Theory of Phase Transitions: Rigorous Results. Oxford: Pergamon Press.
Slovej, J. P. (2011). The stability of matter in quantum mechanics, by Elliott H. Lieb and Robert Seiringer, Book review Bulletin of American Mathematical Society, 50, 169–174.
Suksombat, S. Khafizov, R., Kozlov, A. et al. (2015). Structural dynamics of E. coli singlestranded DNA binding protein reveal DNA wrapping and unwrapping pathways, Elife, 25: 4, 1–53, doi: 10.7554/eLife.08193.
Tasaki, H. (1998). From quantum dynamics to the canonical distribution: general picture and a rigorous example, Physical Review Letters, 80, 1373–1376.
Theobald, D. L. (2011). On universal common ancestry: Sequence similarity, and phylogenetic structure: the sins of P-values and the virtues of Bayesian evidence. Biology Direct, 6, 60 (25 pages).
Tombari, E., Ferrari, C., Salvetti, G. B., and Johari, G. (2005). Endothermic freezing on heating and exothermic melting on cooling, Journal of Chemical Physics, 123, 051104.
Tourchette, H. (2009). The large deviation approach to statistical mechanics, Physics Report, 478, 1–69.
Widom, B. (1965). Equation of state in the neighborhood of the critical point. Journal of Chemical Physics, 43, 3898.
Williams, R. (2009). September, 1911, the Sackur-Tetrode equation: how entropy met quantum mechanics, APS News: This Month in Physics History. September.
Yamamoto, Y. (2007–8). Historical Development of Thoughts of Heat Theory. Tokyo: Chikuma Shobo.
Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical, Review of Modern Physics, 75, 715–775.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.