Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T23:43:30.068Z Has data issue: false hasContentIssue false

4 - Covariate Analysis in Clinical Anaesthesia

from Section 1 - Basic Principles

Published online by Cambridge University Press:  03 December 2019

Pedro L. Gambús
Affiliation:
Hospital Clinic de Barcelona, Spain
Jan F. A. Hendrickx
Affiliation:
Aalst General Hospital, Belgium
Get access

Summary

The goal of pharmacological treatment is a desired response, known as the target effect (e.g. bispectral index of 50). An understanding of the concentration–response relationship (i.e. pharmacodynamics (PD)) can be used to predict the target concentration (e.g. propofol 4 mg/L) required to achieve this target effect in a typical individual [1]. Pharmacokinetic (PK) knowledge (e.g. clearance, volume) then determines the dose that will achieve the target concentration. Each individual, however, is somewhat different and there is variability associated with all parameters used in PK and PD equations (known as models). Covariate information (e.g. weight, age, pathology, drug interactions, pharmacogenomics) can be used to help predict the dose in a specific patient. The Holy Grail of clinical pharmacology is prediction of drug PK and PD in the individual patient (Fig. 4.1) and this requires knowledge of the covariates that contribute to variability [2].

Type
Chapter
Information
Personalized Anaesthesia
Targeting Physiological Systems for Optimal Effect
, pp. 40 - 62
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Holford, NHG: The target concentration approach to clinical drug development. Clin.Pharmacokinet. 1995; 29 (5): 287–91.CrossRefGoogle ScholarPubMed
Benet, LZ: Holy, A Grail of clinical pharmacology: prediction of drug pharmacokinetics and pharmacodynamics in the individual patient. Clin.Pharmacol.Ther. 2009; 86 (2): 133–4.Google Scholar
Anderson, BJ, Allegaert, K, Van den Anker, JN, Cossey, V, Holford, NH: Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br.J.Clin.Pharmacol. 2007; 63 (1): 7584.Google Scholar
Tod, M, Jullien, V, Pons, G: Facilitation of drug evaluation in children by population methods and modelling. Clin.Pharmacokinet. 2008; 47 (4): 231–43.CrossRefGoogle ScholarPubMed
Anderson, BJ, Holford, NH: Understanding dosing: children are small adults, neonates are immature children. Arch.Dis.Child. 2013; 98 (9): 737–44.Google Scholar
Lack, JA, Stuart Taylor, ME: Calculation of drug dosage and body surface area of children. Br.J.Anaesth. 1997; 78 (5): 601–5.Google Scholar
Sumpter, AL, Holford, NH: Predicting weight using postmenstrual age – neonates to adults. Paediatr.Anaesth. 2011; 21 (3): 309–15.CrossRefGoogle ScholarPubMed
Anderson, BJ, Meakin, GH: Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr.Anaesth. 2002; 12 (3): 205–19.Google Scholar
Anderson, BJ, Holford, NH: Mechanistic basis of using body size and maturation to predict clearance in humans. Drug.Metab.Pharmacokinet. 2009; 24 (1): 2536.Google Scholar
Du Bois, D, Du Bois, EF: Clinical calorimetry: tenth paper. A formula to estimate the approximate surface area if height and weight be known. Arch.Intern.Med. 1916; 17: 863–71.Google Scholar
James, W. Research on Obesity. London: Her Majesty’s Stationary Office, 1976.Google Scholar
Janmahasatian, S, Duffull, SB, Ash, S, Ward, LC, Byrne, NM, Green, B: Quantification of lean bodyweight. Clin.Pharmacokinet. 2005; 44 (10): 1051–65.Google Scholar
Rhodin, MM, Anderson, BJ, Peters, AM, Coulthard, MG, Wilkins, B, Cole, M, et al: Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr.Nephrol. 2009; 24 (1): 6776.Google Scholar
West, GB, Brown, JH: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J.Exp.Biol. 2005; 208 (Pt 9): 1575–92.Google Scholar
West, GB, Brown, JH, Enquist, BJ: A general model for the origin of allometric scaling laws in biology. Science. 1997; 276 (5309): 122–6.CrossRefGoogle ScholarPubMed
Anderson, BJ, Holford, NH: Mechanism-based concepts of size and maturity in pharmacokinetics. Annu.Rev.Pharmacol.Toxicol. 2008; 48: 303–32.CrossRefGoogle ScholarPubMed
Holford, S, Allegaert, K, Anderson, BJ, Kukanich, B, Sousa, AB, Steinman, A, et al: Parent-metabolite pharmacokinetic models for tramadol – tests of assumptions and predictions. J.Pharmacol.Clin.Toxicol. 2014; 2 (1): 1023.Google Scholar
Ross, AK, Davis, PJ, Gd GL, Dear, Ginsberg, B, McGowan, FX, Stiller, RD, et al: Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth.Analg. 2001; 93 (6): 1393–401.CrossRefGoogle ScholarPubMed
Rigby-Jones, AE, Priston, MJ, Sneyd, JR, McCabe, AP, Davis, GI, Tooley, MA, et al: Remifentanil-midazolam sedation for paediatric patients receiving mechanical ventilation after cardiac surgery. Brit.J.Anaesth. 2007; 99 (2): 252–61.Google Scholar
Welzing, L, Ebenfeld, S, Dlugay, V, Wiesen, MH, Roth, B, Mueller, C: Remifentanil degradation in umbilical cord blood of preterm infants. Anesthesiology. 2011; 114 (3): 570–7.Google Scholar
Potts, AL, Larsson, P, Eksborg, S, Warman, G, Lonnqvist, P-A, Anderson, BJ: Clonidine disposition in children; a population analysis. Pediatr.Anesth. 2007; 17 (10): 924–33.Google Scholar
Anderson, BJ, van Lingen, RA, Hansen, TG, Lin, YC, Holford, NH: Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002; 96 (6): 1336–45.Google Scholar
Herd, D, Anderson, BJ: Ketamine disposition in children presenting for procedural sedation and analgesia in a children’s emergency department. Paediatr.Anaesth. 2007; 17 (7): 622–9.Google Scholar
Chalkiadis, GA, Anderson, BJ: Age and size are the major covariates for prediction of levobupivacaine clearance in children. Paediatr.Anaesth. 2006; 16 (3): 275–82.Google Scholar
Allegaert, K, van den Anker, JN, de Hoon, JN, van Schaik, RH, Debeer, A, Tibboel, D, et al: Covariates of tramadol disposition in the first months of life. Brit.J.Anaesth. 2008; 100 (4): 525–32.Google Scholar
Allegaert, K, Anderson, BJ, van den Anker, JN, Vanhaesebrouck, S, de Zegher, F: Renal drug clearance in preterm neonates: relation to prenatal growth. Ther.Drug.Monit. 2007; 29 (3): 284–91.Google Scholar
Johnson, TN: The problems in scaling adult drug doses to children. Arch.Dis.Child. 2008; 93 (3): 207–11.CrossRefGoogle ScholarPubMed
Edginton, AN, Schmitt, W, Voith, B, Willmann, S: A mechanistic approach for the scaling of clearance in children. Clin.Pharmacokinet. 2006; 45 (7): 683704.CrossRefGoogle ScholarPubMed
Holford, N, Heo, YA, Anderson, B: A pharmacokinetic standard for babies and adults. J.Pharm.Sci. 2013; 102 (9): 2941–52.Google Scholar
Hill, AV: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J.Physiol. 1910; 14: ivvii.Google Scholar
Saarenmaa, E, Neuvonen, PJ, Fellman, V. Gestational age and birth weight effects on plasma clearance of fentanyl in newborn infants. J.Pediatr. 2000; 136 (6): 767–70.CrossRefGoogle ScholarPubMed
Allegaert, K, Palmer, GM, Anderson, BJ: The pharmacokinetics of intravenous paracetamol in neonates: size matters most. Arch.Dis.Child. 2011; 96 (6): 575–80.CrossRefGoogle ScholarPubMed
Anderson, BJ, Pons, G, Autret-Leca, E, Allegaert, K, Boccard, E: Pediatric intravenous paracetamol (propacetamol) pharmacokinetics: a population analysis. Paediatr.Anaesth. 2005; 15 (4): 282–92.Google Scholar
Pokela, ML, Olkkola, KT, Seppala, T, Koivisto, M: Age-related morphine kinetics in infants. Dev.Pharmacol.Ther. 1993; 20 (1–2): 2634.CrossRefGoogle ScholarPubMed
Peters, JW, Anderson, BJ, Simons, SH, Uges, DR, Tibboel, D: Morphine metabolite pharmacokinetics during venoarterial extra corporeal membrane oxygenation in neonates. Clin.Pharmacokinet. 2006; 45 (7): 705–14.Google Scholar
Anand, KJ, Anderson, BJ, Holford, NH, Hall, RW, Young, T, Shephard, B, et al: Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Brit.J.Anaesth. 2008; 101 (5): 680–9.Google Scholar
Schwartz, GJ, Work, DF: Measurement and estimation of GFR in children and adolescents. CJASN. 2009; 4 (11): 1832–43.CrossRefGoogle ScholarPubMed
Paap, CM, Nahata, MC: Prospective evaluation of ten methods for estimating creatinine clearance in children with varying degrees of renal dysfunction. J.Clin.Pharm.Ther. 1995; 20 (2): 6773.Google Scholar
Cole, M, Price, L, Parry, A, Keir, MJ, Pearson, AD, Boddy, AV, et al: Estimation of glomerular filtration rate in paediatric cancer patients using 51CR-EDTA population pharmacokinetics. Br.J.Cancer. 2004; 90 (1): 60–4.Google Scholar
Schwartz, GJ, Haycock, GB, Edelmann, CM, Jr., Spitzer, A: A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976; 58 (2): 259–63.CrossRefGoogle ScholarPubMed
Schwartz, GJ, Feld, LG, Langford, DJ: A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J.Pediatr. 1984; 104 (6): 849–54.Google Scholar
Brion, LP, Fleischman, AR, McCarton, C, Schwartz, GJ: A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J.Pediatr. 1986; 109 (4): 698707.CrossRefGoogle ScholarPubMed
Standing, JF: Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br.J.Clin.Pharmacol. 2017; 83 (2): 247–54.CrossRefGoogle ScholarPubMed
Eleveld, DJ, Colin, P, Absalom, AR, Struys, M: Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br.J.Anaesth. 2018; 120 (5): 942–59.Google Scholar
Eleveld, DJ, Proost, JH, Vereecke, H, Absalom, AR, Olofsen, E, Vuyk, J, et al: An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology. 2017; 126 (6): 1005–18.CrossRefGoogle ScholarPubMed
Cheymol, G: Effects of obesity on pharmacokinetics implications for drug therapy. Clin.Pharmacokinet. 2000; 39 (3): 215–31.CrossRefGoogle ScholarPubMed
Cortinez, LI, Anderson, BJ, Holford, NH, Puga, V, de la Fuente, N, Auad, H, et al: Dexmedetomidine pharmacokinetics in the obese. Eur.J.Clin. Pharm. 2015; 71(12): 1501–8.Google Scholar
Egan, TD, Huizinga, B, Gupta, SK, Jaarsma, RL, Sperry, RJ, Yee, JB, et al: Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology. 1998; 89 (3): 562–73.CrossRefGoogle ScholarPubMed
Coldrey, JC, Upton, RN, Macintyre, PE: Advances in analgesia in the older patient. Best practice and research. Clin.Anaesth. 2011; 25 (3): 367–78.Google Scholar
McLean, AJ, Le Couteur, DG: Aging biology and geriatric clinical pharmacology. Pharmacol. Rev. 2004; 56 (2): 163–84.CrossRefGoogle ScholarPubMed
Le Couteur, DG, McLean, AJ: The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin.Pharm. 1998; 34 (5): 359–73.Google Scholar
Minto, CF, Schnider, TW, Egan, TD, Youngs, E, Lemmens, HJ, Gambus, PL, et al: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. Anesthesiology. 1997; 86: 1023.Google Scholar
Schuttler, J, Ihmsen, H: Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000; 92 (3): 727–38.CrossRefGoogle ScholarPubMed
Eleveld, DJ, Proost, JH, Cortinez, LI, Absalom, AR, Struys, MM: A general purpose pharmacokinetic model for propofol. Anesth.Analg. 2014; 118 (6): 1221–37.Google Scholar
Upton, RN, Ludbrook, GL: A physiological model of induction of anaesthesia with propofol in sheep. 1. Structure and estimation of variables. Br.J.Anaesth. 1997; 79 (4): 497504.Google Scholar
Cortinez, LI, Troconiz, IF, Fuentes, R, Gambus, P, Hsu, YW, Altermatt, F, et al: The influence of age on the dynamic relationship between end-tidal sevoflurane concentration and bispectral index. Anesth.Anal. 2008; 107: 1566–72.Google Scholar
Minto, CF, Schnider, TW, Egan, TD, Youngs, E, Lemmens, HJ, Gambus, PL, et al: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997; 86 (1): 1023.Google Scholar
Vuyk, J, Lichtenbelt, BJ, Olofsen, E, van Kleef, JW, Dahan, A: Mixed-effects modeling of the influence of midazolam on propofol pharmacokinetics. Anesth.Analg. 2009; 108 (5): 1522–30.CrossRefGoogle ScholarPubMed
Verbeeck, RK: Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur.J.Clin.Pharm. 2008; 64 (12): 1147–61.Google Scholar
Blaschke, TF: Protein binding and kinetics of drugs in liver diseases. Clin.Pharmacokinet. 1977; 2 (1): 3244.CrossRefGoogle ScholarPubMed
Kaivosaari, S, Toivonen, P, Aitio, O, Sipila, J, Koskinen, M, Salonen, JS, et al: Regio- and stereospecific N-glucuronidation of medetomidine: the differences between UDP glucuronosyltransferase (UGT) 1A4 and UGT2B10 account for the complex kinetics of human liver microsomes. Drug.Metab.Dispos. 2008; 36 (8): 1529–37.Google Scholar
Kohli, U, Pandharipande, P, Muszkat, M, Sofowora, GG, Friedman, EA, Scheinin, M, et al: CYP2A6 genetic variation and dexmedetomidine disposition. Eur.J.Clin.Pharm. 2012; 68 (6): 937–42.CrossRefGoogle ScholarPubMed
Song, JC, Gao, H, Qiu, HB, et al. The pharmacokinetics of dexmedetomidine in patients with obstructive jaundice: A clinical trial. PLoS One 2018; 13: e0207427.Google Scholar
Servin, F, Cockshott, ID, Farinotti, R, Haberer, JP, Winckler, C, Desmonts, JM: Pharmacokinetics of propofol infusions in patients with cirrhosis. Br.J.Anaesth. 1990; 65 (2): 177–83.CrossRefGoogle ScholarPubMed
Elston, AC, Bayliss, MK, Park, GR: Effect of renal failure on drug metabolism by the liver. Br.J.Anaesth. 1993; 71 (2): 282–90.Google Scholar
Chauvin, M, Sandouk, P, Scherrmann, JM, Farinotti, R, Strumza, P, Duvaldestin, P: Morphine pharmacokinetics in renal failure. Anesthesiology. 1987; 66 (3): 327–31.Google Scholar
Hannam, JA, Anderson, BJ: Contribution of morphine and morphine-6-glucuronide to respiratory depression in a child. Anaesth.Intensive.Care. 2012; 40 (5): 867–70.Google Scholar
Verbeeck, RK, Musuamba, FT: Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur.J.Clin.Pharm. 2009; 65 (8): 757–73.Google Scholar
Hannam, JA, Anderson, BJ: Pharmacodynamic interaction models in pediatric anesthesia. Paediatr.Anaesth. 2015; 25: 970–80.CrossRefGoogle ScholarPubMed
Chan, PL, Holford, NH: Drug treatment effects on disease progression. Annu.Rev.Pharmacol.Toxicol. 2001; 41: 625–59.CrossRefGoogle ScholarPubMed
Brown, RD, Kearns, GL, Wilson, JT: Integrated pharmacokinetic-pharmacodynamic model for acetaminophen, ibuprofen, and placebo antipyresis in children. J.Pharmacokinet.Biopharm. 1998; 26 (5): 559–79.Google Scholar
Lavy, JA: Post-tonsillectomy pain: the difference between younger and older patients. Int.J.Pediatr.Otorhinolaryngol. 1997; 42 (1): 1115.Google Scholar
Murthy, P, Laing, MR: Dissection tonsillectomy: pattern of post-operative pain, medication and resumption of normal activity. J.Laryngol.Otol. 1998; 112 (1): 41–4.Google Scholar
Stewart, DW, Ragg, PG, Sheppard, S, Chalkiadis, GA: The severity and duration of postoperative pain and analgesia requirements in children after tonsillectomy, orchidopexy, or inguinal hernia repair. Pediatr.Anesth. 2012; 22 (2): 136–43.CrossRefGoogle ScholarPubMed
Anderson, BJ, Woollard, GA, Holford, NH: Acetaminophen analgesia in children: placebo effect and pain resolution after tonsillectomy. Eur.J.Clin.Pharmacol. 2001; 57 (8): 559–69.Google Scholar
Anderson, BJ, Holford, NH, Woollard, GA, Kanagasundaram, S, Mahadevan, M: Perioperative pharmacodynamics of acetaminophen analgesia in children. Anesthesiology. 1999; 90 (2): 411–21.Google Scholar
Anderson, B, Cranswick, N: The placebo (I shall please)–is it so pleasing in children? Paediatr.Anaesth. 2005; 15 (10): 809–13.Google Scholar
Simmons, K, Ortiz, R, Kossowsky, J, Krummenacher, P, Grillon, C, Pine, D, et al: Pain and placebo in pediatrics: a comprehensive review of laboratory and clinical findings. J.Pain. 2014; 155 (11): 2229–35.Google Scholar
Weimer, K, Gulewitsch, MD, Schlarb, AA, Schwille-Kiuntke, J, Klosterhalfen, S, Enck, P: Placebo effects in children: a review. Pediatr.Res. 2013; 74 (1): 96102.Google Scholar
Krummenacher, P, Kossowsky, J, Schwarz, C, Brugger, P, Kelley, JM, Meyer, A, et al: Expectancy-induced placebo analgesia in children and the role of magical thinking. J.Pain. 2014; 15 (12): 1282–93.CrossRefGoogle ScholarPubMed
Bjornsson, MA, Simonsson, US: Modelling of pain intensity and informative dropout in a dental pain model after naproxcinod, naproxen and placebo administration. Br.J.Clin.Pharmacol. 2011; 71 (6): 899906.CrossRefGoogle Scholar
Johr, M: Postanaesthesia excitation. Paediatr.Anaesth. 2002; 12 (4): 308–12.Google Scholar
Benedetti, F: Placebo and endogenous mechanisms of analgesia. Handb.Exp.Pharmacol. 2007; 177: 393413.Google Scholar
Marchand, S, Gaumond, I: Placebo and nocebo: how to enhance therapies and avoid unintended sabotage to pain treatment. Pain.Manag. 2013; 3 (4): 285–94.Google Scholar
Zaccara, G, Giovannelli, F, Schmidt, D: Placebo and nocebo responses in drug trials of epilepsy. Epilepsy. Behav. 2015; 43: 128–34.CrossRefGoogle ScholarPubMed
Manchikanti, L, Pampati, V, Damron, K: The role of placebo and nocebo effects of perioperative administration of sedatives and opioids in interventional pain management. Pain.Physician. 2005; 8 (4): 349–55.Google Scholar
Rothman, KJ, Michels, KB: The continuing unethical use of placebo controls. N.Engl.J.Med. 1994; 331 (6): 394–8.Google Scholar
Sheiner, LB: A new approach to the analysis of analgesic drug trials, illustrated with bromfenac data. Clin.Pharmacol.Ther. 1994; 56 (3): 309–22.Google Scholar
Anderson, BJ, Hannam, JA: Considerations when using pharmacokinetic/pharmacodynamic modeling to determine the effectiveness of simple analgesics in children. Expert.Opin. Drug.Metab.Toxicol. 2015; 11 (9): 1393–408.CrossRefGoogle ScholarPubMed
Hannam, J, Anderson, BJ: Explaining the acetaminophen-ibuprofen analgesic interaction using a response surface model. Paediatr.Anaesth. 2011; 21 (12): 1234–40.CrossRefGoogle ScholarPubMed
Gal, P, Gilman, JT: Drug disposition in neonates with patent ductus arteriosus. Ann.Pharmacother. 1993; 27 (11): 1383–8.Google Scholar
Rabbitts, JA, Groenewald, CB, Rasanen, J: Geographic differences in perioperative opioid administration in children. Pediatr.Anesth. 2012; 22 (7): 676–81.Google Scholar
Klockars, JG, Hiller, A, Munte, S, van Gils, MJ, Taivainen, T: Spectral entropy as a measure of hypnosis and hypnotic drug effect of total intravenous anesthesia in children during slow induction and maintenance. Anesthesiology. 2012; 116 (2): 340–51.Google Scholar
Henthorn, TK, Liu, Y, Mahapatro, M, Ng, KY: Active transport of fentanyl by the blood-brain barrier. J.Pharmacol.Exp.Ther. 1999; 289 (2): 1084–9.Google Scholar
Hamabe, W, Maeda, T, Kiguchi, N, Yamamoto, C, Tokuyama, S, Kishioka, S: Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J.Pharmacol.Sci. 2007; 105 (4): 353–60.CrossRefGoogle ScholarPubMed
Wietasch, JK, Scholz, M, Zinserling, J, Kiefer, N, Frenkel, C, Knufermann, P, et al: The performance of a target-controlled infusion of propofol in combination with remifentanil: a clinical investigation with two propofol formulations. Anesth.Analg. 2006; 102 (2): 430–7.Google Scholar
Choi, L, Ferrell, BA, Vasilevskis, EE, Pandharipande, PP, Heltsley, R, Ely, EW, et al: Population pharmacokinetics of fentanyl in the critically ill. Crit.Care.Med. 2016; 44 (1): 6472.Google Scholar
Potts, AL, Cheeseman, JF, Warman, GR: Circadian rhythms and their development in children: implications for pharmacokinetics and pharmacodynamics in anesthesia. Pediatr.Anesth. 2011; 21 (3): 238–46.Google Scholar
Brainard, J, Gobel, M, Bartels, K, Scott, B, Koeppen, M, Eckle, T: Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions. Semin.Cardiothorac.Vasc.Anesth. 2015; 19 (1): 4960.CrossRefGoogle ScholarPubMed
Reinberg, A, Reinberg, MA: Circadian changes of the duration of action of local anaesthetic agents. Naunyn-Schmiedebergs Arch.Pharmacol. 1977; 297 (2): 149–52.Google Scholar
Lemmer, B, Wiemers, R: Circadian changes in stimulus threshold and in the effect of a local anaesthetic drug in human teeth: studies with an electronic pulptester. Chronobiol.Intern. 1989; 6 (2): 157–62.Google Scholar
Debon, R, Chassard, D, Duflo, F, Boselli, E, Bryssine, B, Allaouchiche, B: Chronobiology of epidural ropivacaine: variations in the duration of action related to the hour of administration. Anesthesiology. 2002; 96 (3): 542–5.CrossRefGoogle Scholar
Cheeseman, JF, Merry, AF, Pawley, MD, de Souza, RL, Warman, GR: The effect of time of day on the duration of neuromuscular blockade elicited by rocuronium. Anaesthesia. 2007; 62 (11): 1114–20.Google Scholar
Levi, FA, Zidani, R, Vannetzel, JM, Perpoint, B, Focan, C, Faggiuolo, R, et al: Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial. J.Natl.Canc.Inst. 1994; 86 (21): 1608–17.CrossRefGoogle ScholarPubMed
Kamali, F, Fry, JR, Bell, GD: Temporal variations in paracetamol absorption and metabolism in man. Xenobiotica. 1987; 17 (5): 635–41.Google Scholar
Halsas, M, Hietala, J, Veski, P, Jurjenson, H, Marvola, M: Morning versus evening dosing of ibuprofen using conventional and time-controlled release formulations. Int.J.Pharmaceut. 1999; 189 (2): 179–85.Google Scholar
Clench, J, Reinberg, A, Dziewanowska, Z, Ghata, J, Smolensky, M: Circadian changes in the bioavailability and effects of indomethacin in healthy subjects. Eur.J.Clin.Pharmacol. 1981; 20 (5): 359–69.Google Scholar
Mustofa, M, Suryawati, S, Dwiprahasto, I, Santoso, B: The relative bioavailability of diclofenac with respect to time of administration. Brit.J.Clin.Pharmacol. 1991; 32 (2): 246–7.Google Scholar
Ollagnier, M, Decousus, H, Cherrah, Y, Levi, F, Mechkouri, M, Queneau, P, et al: Circadian changes in the pharmacokinetics of oral ketoprofen. Clin.Pharmacokinet. 1987; 12 (5): 367–78.Google Scholar
Han, PY, Duffull, SB, Kirkpatrick, CM, Green, B: Dosing in obesity: a simple solution to a big problem. Clin.Pharmacol.Ther. 2007; 82 (5): 505–8.CrossRefGoogle ScholarPubMed
Abernethy, DR, Greenblatt, DJ: Drug disposition in obese humans. An update. Clin.Pharmacokinet. 1986; 11 (3): 199213.Google Scholar
Mulla, H, Johnson, TN. Dosing dilemmas in obese children. Arch.Dis.Child.Educ.Pract.Ed. 2010; 95 (4): 112–17.Google Scholar
Anderson, BJ, Holford, NH: Getting the dose right for obese children. Arch.Dis.Child. 2017; 102 (1): 54–5.CrossRefGoogle ScholarPubMed
Anderson, BJ, Holford, NH: What is the best size predictor for dose in the obese child? Pediatr.Anesth. 2017; 27 (12): 1176–84.Google Scholar
Chidambaran, V, Venkatasubramanian, R, Sadhasivam, S, Esslinger, H, Cox, S, Diepstraten, J, et al: Population pharmacokinetic-pharmacodynamic modeling and dosing simulation of propofol maintenance anesthesia in severely obese adolescents. Pediatr.Anesth. 2015; 25 (9): 911–23.Google Scholar
Cortinez, LI, Anderson, BJ, Penna, A, Olivares, L, Munoz, HR, Holford, NH, et al: Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Brit.J.Anaesth. 2010; 105 (4): 448–56.Google Scholar
Diepstraten, J, Chidambaran, V, Sadhasivam, S, Esslinger, HR, Cox, SL, Inge, TH, et al: Propofol clearance in morbidly obese children and adolescents: influence of age and body size. Clin.Pharmacokinet. 2012; 51 (8): 543–51.Google Scholar
Holford, NHG, Anderson, BJ: Allometric size: the scientific theory and extension to normal fat mass. Eur.J.Pharm.Sci. 2017; 109S: S59S64.CrossRefGoogle ScholarPubMed
Allegaert, K, Olkkola, KT, Owens, KH, Van de Velde, M, de Maat, MM, Anderson, BJ: Covariates of intravenous paracetamol pharmacokinetics in adults. BMC Anesthesiol. 2014; 14: 77.Google Scholar
Tham, LS, Wang, LZ, Soo, RA, Lee, HS, Lee, SC, Goh, BC, et al: Does saturable formation of gemcitabine triphosphate occur in patients? Canc.Chemother.Pharmacol. 2008; 63 (1): 5564.Google Scholar
McCune, JS, Bemer, MJ, Barrett, JS, Scott Baker, K, Gamis, AS, Holford, NHG: Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and bayesian dose personalization. Clin.Canc.Res. 2014; 20 (3): 754–63.CrossRefGoogle ScholarPubMed
Cortinez, LI, Anderson, BJ, Holford, NH, Puga, V, de la Fuente, N, Auad, H, et al: Dexmedetomidine pharmacokinetics in the obese. Eur.J.Clin.Pharmacol. 2015; 71 (12): 1501–8.Google Scholar
Van Boxtel, C, Holford, N, Danhof, M: In Vivo Study of Drug Action. Amsterdam: Elsevier, 1992.Google Scholar
Schnider, TW, Minto, CF, Shafer, SL, Gambus, PL, Andresen, C, Goodale, DB, et al: The influence of age on propofol pharmacodynamics. Anesthesiology. 1999; 90 (6): 1502–16.Google Scholar
Lerman, J. Pharmacology of inhalational anaesthetics in infants and children. Paediatr.Anaesth. 1992; 2: 191203.CrossRefGoogle Scholar
LeDez, KM, Lerman, J. The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology. 1987; 67 (3): 301–7.CrossRefGoogle ScholarPubMed
Warner, MA, Kunkel, SE, Offord, KO, Atchison, SR, Dawson, B: The effects of age, epinephrine, and operative site on duration of caudal analgesia in pediatric patients. Anesth.Analg. 1987; 66 (10): 995–8.Google Scholar
Lerman, J, Robinson, S, Willis, MM, Gregory, GA: Anesthetic requirements for halothane in young children 0–1 month and 1–6 months of age. Anesthesiology. 1983; 59 (5): 421–4.Google Scholar
Molin, JC, Bendhack, LM: Clonidine induces rat aorta relaxation by nitric oxide-dependent and -independent mechanisms. Vascul.Pharmacol. 2004; 42 (1): 16.Google Scholar
Chugani, DC, Muzik, O, Juhasz, C, Janisse, JJ, Ager, J, Chugani, HT: Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann.Neurol. 2001; 49 (5): 618–26.Google Scholar
Herlenius, E, Lagercrantz, H: Development of neurotransmitter systems during critical periods. Exp.Neurol. 2004; 190 Suppl 1: S821.Google Scholar
Chugani, HT, Kumar, A, Muzik, O: GABA(A) receptor imaging with positron emission tomography in the human newborn: a unique binding pattern. Pediatr.Neurol. 2013; 48 (6): 459–62.Google Scholar
Koch, SC, Fitzgerald, M, Hathway, GJ: Midazolam potentiates nociceptive behavior, sensitizes cutaneous reflexes, and is devoid of sedative action in neonatal rats. Anesthesiology. 2008; 108 (1): 122–9.Google Scholar
Choudhuri, S, Klaassen, CD: Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int.J.Toxicol. 2006; 25 (4): 231–59.Google Scholar
Herd, DW, Anderson, BJ, Keene, NA, Holford, NH: Investigating the pharmacodynamics of ketamine in children. Paediatr.Anaesth. 2008; 18 (1): 3642.Google Scholar
Sani, O, Shafer, SL: MAC Attack? Anesthesiology. 2003; 99 (6): 1249–50.Google Scholar
Dilger, JP: From individual to population: the minimum alveolar concentration curve. Curr.Opin.Anaesthesiol. 2006; 19 (4): 390–6.Google Scholar
de Jong, RH, Eger, EI: 2nd. MAC expanded: AD50 and AD95 values of common inhalation anesthetics in man. Anesthesiology. 1975; 42 (4): 384–9.Google Scholar
Gourlay, GK, Kowalski, SR, Plummer, JL, Cousins, MJ, Armstrong, PJ: Fentanyl blood concentration-analgesic response relationship in the treatment of postoperative pain. Anesth.Analg. 1988; 67 (4): 329–37.Google Scholar
Dutta, S, Matsumoto, Y, Ebling, WF: Is it possible to estimate the parameters of the sigmoid Emax model with truncated data typical of clinical studies? J.Pharm.Sci. 1996; 85 (2): 232–9.Google Scholar
Dixon, WJ: Staircase bioassay: the up-and-down method. Neurosci.Biobehav.Rev. 1991; 15 (1): 4750.Google Scholar
Gorges, M, Zhou, G, Brant, R, Ansermino, JM: Sequential allocation trial design in anesthesia: an introduction to methods, modeling, and clinical applications. Paediatr.Anaesth. 2017; 27 (3): 240–7.Google Scholar
Hansen, MS, Mathiesen, O, Trautner, S, Dahl, JB: Intranasal fentanyl in the treatment of acute pain – a systematic review. Acta.Anaesthesiol.Scand. 2012; 56 (4): 407–19.Google Scholar
Lotsch, J, Skarke, C, Liefhold, J, Geisslinger, G: Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin.Pharmacokinet. 2004; 43 (14): 9831013.Google Scholar
Hannam, J, Anderson, BJ, Veyckemans, F: Tears at breakfast. Pediatr.Anesth. 2012; 22 (4): 419.Google Scholar
Jimenez, N, Anderson, GD, Shen, DD, Nielsen, SS, Farin, FM, Seidel, K, et al: Is ethnicity associated with morphine’s side effects in children? Morphine pharmacokinetics, analgesic response, and side effects in children having tonsillectomy. Pediatr.Anesth. 2012; 22 (7): 669–75.Google Scholar
Myles, PS, Buchanan, FF, Bain, CR: The effect of hair colour on anaesthetic requirements and recovery time after surgery. Anaesth. Intensive Care. 2012; 40 (4): 683–9.Google Scholar
Kaitin, KI: Deconstructing the drug development process: the new face of innovation. Clin.Pharmacol.Ther. 2010; 87 (3): 356–61.Google Scholar
Long, LS, Ved, S, Koh, JL: Intraoperative opioid dosing in children with and without cerebral palsy. Paediatr.Anaesth. 2009; 19 (5): 513–20.Google Scholar
Valkenburg, AJ, de Leeuw, TG, Tibboel, D, Weber, F: Lower bispectral index values in children who are intellectually disabled. Anesth.Analg. 2009; 109 (5): 1428–33.Google Scholar
Hallett, BR, Chalkiadis, GA: Suspected opioid-induced hyperalgesia in an infant. Br.J.Anaesth. 2012; 108 (1): 116–18.Google Scholar
Meibohm, B, Beierle, I, Derendorf, H: How important are gender differences in pharmacokinetics? Clin.Pharmacol. 2002; 41 (5): 329–42.Google Scholar
Beierle, I, Meibohm, B, Derendorf, H: Gender differences in pharmacokinetics and pharmacodynamics. Int.J.Clin.Pharm.Ther. 1999; 37 (11): 529–47.Google Scholar
Apfelbaum, JL, Grasela, TH, Hug, CC, Jr., McLeskey, CH, Nahrwold, ML, Roizen, MF, et al: The initial clinical experience of 1819 physicians in maintaining anesthesia with propofol: characteristics associated with prolonged time to awakening. Anesth.Analg. 1993; 77 (4 Suppl): S1014.Google Scholar
Hoymork, SC, Raeder, J, Grimsmo, B, Steen, PA: Bispectral index, predicted and measured drug levels of target-controlled infusions of remifentanil and propofol during laparoscopic cholecystectomy and emergence. Acta Anaesth. Scand. 2000; 44 (9): 1138–44.Google Scholar
Hoymork, SC, Raeder, J, Grimsmo, B, Steen, PA: Bispectral index, serum drug concentrations and emergence associated with individually adjusted target-controlled infusions of remifentanil and propofol for laparoscopic surgery. Br.J.Anaesth. 2003; 91 (6): 773–80.Google Scholar
Vuyk, J, Oostwouder, CJ, Vletter, AA, Burm, AG, Bovill, JG: Gender differences in the pharmacokinetics of propofol in elderly patients during and after continuous infusion. Br.J.Anaesth. 2001; 86 (2): 183–8.Google Scholar
Hoymork, SC, Raeder, J. Why do women wake up faster than men from propofol anaesthesia? Br.J.Anaesth. 2005; 95 (5): 627–33.Google Scholar
Niesters, M, Dahan, A, Kest, B, Zacny, J, Stijnen, T, Aarts, L, et al: Do sex differences exist in opioid analgesia? A systematic review and meta-analysis of human experimental and clinical studies. J.Pain. 2010; 151 (1): 61–8.Google ScholarPubMed
Sarton, E, Olofsen, E, Romberg, R, den Hartigh, J, Kest, B, Nieuwenhuijs, D, et al: Sex differences in morphine analgesia: an experimental study in healthy volunteers. Anesthesiology. 2000; 93 (5): 1245–54; discussion 6A.Google Scholar
Dahan, A, Kest, B, Waxman, AR, Sarton, E: Sex-specific responses to opiates: animal and human studies. Anesth.Analg. 2008; 107 (1): 8395.Google Scholar
Rabbitts, JA, Groenewald, CB, Dietz, NM, Morales, C, Rasanen, J: Perioperative opioid requirements are decreased in hypoxic children living at altitude. Pediatr.Anesth. 2010; 20 (12): 1078–83.Google Scholar
Sadhasivam, S, Chidambaran, V, Ngamprasertwong, P, Esslinger, HR, Prows, C, Zhang, X, et al: Race and unequal burden of perioperative pain and opioid related adverse effects in children. Pediatrics. 2012; 129 (5): 832–8.Google Scholar
Sadhasivam, S, Krekels, EH, Chidambaran, V, Esslinger, HR, Ngamprasertwong, P, Zhang, K, et al: Morphine clearance in children: does race or genetics matter? J. Opioid Manag. 2012; 8 (4): 217–26.Google Scholar
Chidambaran, V, Ngamprasertwong, P, Vinks, AA, Sadhasivam, S: Pharmacogenetics and anesthetic drugs. Curr.Clin.Pharmacol. 2012; 7 (2): 78101.Google Scholar
Cohen, M, Sadhasivam, S, Vinks, AA: Pharmacogenetics in perioperative medicine. Curr.Opin.Anaesthesiol. 2012; 25 (4): 419–27.Google Scholar
Stamer, UM, Stuber, F: Pharmacogenetics of anesthetic and analgesic agents: CYP2D6 genetic variations. Anesthesiology. 2005; 103 (5): 1099; author reply 101.Google Scholar
Williams, DG, Patel, A, Howard, RF: Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Brit.J.Anaesth. 2002; 89 (6): 839–45.Google Scholar
Anderson, BJ. Is it farewell to codeine? Arch.Dis.Child. 2013; 98 (12): 986–8.CrossRefGoogle ScholarPubMed
Rigby-Jones, A, Sneyd, JR: Cardiovascular changes after achieving constant effect site concentration of propofol. Anaesthesia. 2008; 63 (7): 780.Google Scholar
Hutchinson, MR, Coats, BD, Lewis, SS, Zhang, Y, Sprunger, DB, Rezvani, N, et al: Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain.Behav.Immun. 2008; 22 (8): 1178–89.Google Scholar
Candiotti, KA, Yang, Z, Morris, R, Yang, J, Crescimone, NA, Sanchez, GC, et al: Polymorphism in the interleukin-1 receptor antagonist gene is associated with serum interleukin-1 receptor antagonist concentrations and postoperative opioid consumption. Anesthesiology. 2011; 114 (5): 1162–8.Google Scholar
Lotsch, J, Geisslinger, G: Relevance of frequent mu-opioid receptor polymorphisms for opioid activity in healthy volunteers. J. Pharmacogenomics. 2006; 6 (3): 200–10.Google Scholar
Walter, C, Lotsch, J: Meta-analysis of the relevance of the OPRM1 118A> G genetic variant for pain treatment. J.Pain. 2009; 146 (3): 270–5.Google Scholar
Ross JR, Rutter D, Welsh K, Joel SP, Goller K, Wells AU, et al: Clinical response to morphine in cancer patients and genetic variation in candidate genes. J. Pharmacogenomics. 2005; 5 (5): 324–36.Google Scholar
Liem, EB, Joiner, TV, Tsueda, K, Sessler, DI: Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology. 2005; 102 (3): 509–14.Google Scholar
Lotsch, J, Geisslinger, G: Pharmacogenetics of new analgesics. Br.J.Pharmacol. 2011; 163 (3): 447–60.Google Scholar
Tournier, N, Decleves, X, Saubamea, B, Scherrmann, JM, Cisternino, S: Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology. Curr.Pharm.Des. 2011; 17 (26): 2829–42.Google Scholar
Holford, NH, Buclin, T: Safe and effective variability-a criterion for dose individualization. Ther. Drug Monit. 2012; 34 (5): 565–8.Google Scholar
Palomaki, GE, Bradley, LA, Douglas, MP, Kolor, K, Dotson, WD: Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? An evidence-based review. Genet.Med. 2009; 11 (1): 2134.CrossRefGoogle ScholarPubMed
Fredriksson, A, Archer, T, Alm, H, Gordh, T, Eriksson, P: Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav. Brain Res. 2004; 153 (2): 367–76.Google Scholar
Wang, C, Sadovova, N, Fu, X, Schmued, L, Scallet, A, Hanig, J, et al: The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience. 2005; 132 (4): 967–77.Google Scholar
Bates, E, Reilly, J, Wulfeck, B, Dronkers, N, Opie, M, Fenson, J, et al: Differential effects of unilateral lesions on language production in children and adults. Brain. Lang. 2001; 79 (2): 223–65.Google Scholar
Ansermino, M, Basu, R, Vandebeek, C, Montgomery, C: Nonopioid additives to local anaesthetics for caudal blockade in children: a systematic review. Paediatr.Anaesth. 2003; 13 (7): 561–73.Google Scholar
Dodwell, ER, Latorre, JG, Parisini, E, Zwettler, E, Chandra, D, Mulpuri, K, et al: NSAID exposure and risk of nonunion: a meta-analysis of case-control and cohort studies. Calcif.Tissue.Int. 2010; 87 (3): 193202.Google Scholar
Anderson, BJ, Ralph, CJ, Stewart, AW, Barber, C, Holford, NH: The dose-effect relationship for morphine and vomiting after day-stay tonsillectomy in children. Anaesth.Intens.Care. 2000; 28 (2): 155–60.Google Scholar
Weinstein, MS, Nicolson, SC, Schreiner, MS: A single dose of morphine sulfate increases the incidence of vomiting after outpatient inguinal surgery in children. Anesthesiology. 1994; 81 (3): 572–7.Google Scholar
Bouillon, T, Bruhn, J, Radu-Radulescu, L, Andresen, C, Cohane, C, Shafer, SL: A model of the ventilatory depressant potency of remifentanil in the non-steady state. Anesthesiology. 2003; 99 (4): 779–87.Google Scholar
Standing, JF, Hammer, GB, Sam, WJ, Drover, DR. Pharmacokinetic-pharmacodynamic modeling of the hypotensive effect of remifentanil in infants undergoing cranioplasty. Paediatr.Anaesth. 2010; 20 (1): 718.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×