Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T19:02:52.938Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Piet Van Mieghem
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A. (1968). Handbook of Mathematical Functions. (Dover Publications, Inc., New York).Google Scholar
Addario-Berry, L., Broutin, N., Goldschmidt, C., and Miermont, G. (2013). The scaling limit of the minimum spanning tree of the complete graph. arXiv:1301.1664v1.Google Scholar
Addario-Berry, L., Broutin, N., and Reed, B. (2009). Critical random graphs and the structure of a minimum spanning tree. Random Structures and Algorithms 35, 3 (October), 323-347.CrossRefGoogle Scholar
Aldous, D. (2001). The ϛ(2) limit in the random assignment problem. Random Structures and Algorithms 18, 4, 381-418.CrossRefGoogle Scholar
Allen, A. O. (1978). Probability, Statistics, and Queueing Theory. Computer Science and Applied Mathematics, (Academic Press, Inc., Orlando).Google Scholar
Almkvist, G. and Berndt, B. C. (1988). Gauss, Landen, Ramanuyan, the Arithmic-Geometric Mean, Ellipses, π and the Ladies Diary. American Mathematical Monthly 95, 585-608.Google Scholar
Anderson, R. M. and May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. (Oxford University Press, Oxford, U.K.).Google Scholar
Anick, D., Mitra, D., and Sondhi, M. M. (1982). Stochastic theory of a data-handling system with multiple sources. The Bell System Technical Journal 61, 8 (October), 1871-1894.CrossRefGoogle Scholar
Anupindi, R., Chopra, S., Deshmukh, S. D., Van Mieghem, J. A., and Zemel, E.(2006). Managing Business Flows. Principles of Operations Management, 2nd edn. (Prentice Hall, Upper Saddle River).Google Scholar
Ashcroft, N. W. and Mermin, N. D.(1981). Solid State Physics. (Holt-Saunders International Editions, Tokyo).Google Scholar
Athreya, K. B. and Ney, P. E. (1972). Branching Processes. (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases and its Applications, 2nd edn. (Charlin Griffin & Company, London).Google Scholar
Bak, P. (1996). How Nature Works: The Science of Self-organized Criticality. (Copernicus, Springer-Verlag, New York).CrossRefGoogle Scholar
Barabási, A. L. (2002). Linked, The New Science of Networks. (Perseus, Cambridge, MA).Google Scholar
Barabási, A. L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509-512.Google ScholarPubMed
Baran, P. (2002). The beginnings of packet switching - some underlying concepts: The Franklin Institute and Drexel University seminar on the evolution of packet switching and the Internet. IEEE Communications Magazine, 2-8.Google Scholar
Barrat, A., Bartelemy, M., and Vespignani, A. (2008). Dynamical Processes on Complex Networks. (Cambridge University Press, Cambridge, U. K.).CrossRefGoogle Scholar
Berger, M. A. (1993). An Introduction to Probabiliy and Stochastic Processes. (Springer-Verlag, New York).CrossRefGoogle Scholar
Bertsekas, D. and Gallager, R. (1992). Data Networks, 2nd edn. (Prentice-Hall International Editions, London).Google Scholar
Bhamidi, S., van der Hofstad, R., and Hooghiemstra, G. (2012). Universality for first passage percolation on sparse random graphs. arXiv:1210.6839.Google Scholar
Biggs, N. (1996). Algebraic Graph Theory, 2nd edn. (Cambridge University Press, Cambridge, U. K.).Google Scholar
Billingsley, P. (1995). Probability and Measure, 3rd edn. (John Wiley & Sons, New York).Google Scholar
Bisdikian, C., Lew, J. S., and Tantawi, A. N. (1992). On the tail approximation of the blocking probability of single server queues with finite buffer capacity. Queueing Networks with Finite Capacity, Proc. 2nd Int. Conf., 267-280.Google Scholar
Bollobas, B. (2001). Random Graphs, 2nd edn. (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
Bollobas, B. and Riordan, O. (2001). Mathematical results on scale-free random graphs. Handbook of Graphs and Networks, ed. S., Bornholdt and H. G., Schuster; Wiley-VCH, 1-34.Google Scholar
Borovkov, A. A. (1976). Stochastic Processes in Queueing Theory. (Springer-Verlag, New York).CrossRefGoogle Scholar
Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. (Cambridge University Press, New York).CrossRefGoogle Scholar
Breda, D., Diekmann, O., de Graaf, W. F., Pugliese, A., and Vermiglio, R. (2012). On the formulation of epidemic models (an appraisal of Kermack and McKendrick). Journal of Biological Dynamics 6, Supplement 2, 103-117.CrossRefGoogle Scholar
Brockmeyer, E., Halstrom, H. L., and Jensen, A. (1948). The Life and Works of A. K. Erlang. (Academy of Technical Sciences, Copenhagen).Google Scholar
Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature Letters 464, 1025-1028.CrossRefGoogle ScholarPubMed
Carlitz, L. (1963). The inverse of the error function. Pacific Journal of Mathematics 13, 459-470.CrossRefGoogle Scholar
Cator, E., van de Bovenkamp, R., and Van Mieghem, P. (2013). Susceptible-Infected-Susceptible epidemics on networks with general infection and curing times. Physical Review E 87, 6 (June), 062816.CrossRefGoogle Scholar
Cator, E. and Van Mieghem, P. (2012). Second order mean-field SIS epidemic threshold. Physical Review E 85, 5 (May), 056111.CrossRefGoogle ScholarPubMed
Cator, E. and Van Mieghem, P. (2013a). Nodal infection in Markovian SIS and SIR epidemics on networks are non-negatively correlated.Google Scholar
Cator, E. and Van Mieghem, P. (2013b). Susceptible-Infected-Susceptible epidemics on the complete graph and the star graph: Exact analysis. Physical Review E 87, 1 (January), 012811.CrossRefGoogle Scholar
Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., and Faloutsos, C. (2008). Epidemic thresholds in real networks. ACM Transactions on Information and System Security (TISSEC) 10, 4, 1-26.CrossRefGoogle Scholar
Chalmers, R. C. and Almeroth, K. C. (2001). Modeling the branching characteristics and eiciency gains in global multicast trees. IEEE INFOCOM2001.Google Scholar
Chatterjee, S. and Durrett, R. (2009). Contact process on random graphs with degree power-law distribution have critical value zero. Annals of Probability 37, 2332-2356.CrossRefGoogle Scholar
Chen, L. Y. (1975). Poisson approximation for dependent trials. The Annals of Probability 3, 3, 534-545.CrossRefGoogle Scholar
Chen, W.-K. (1971). Applied Graph Theory. (North-Holland Publishing Company, Amsterdam).Google Scholar
Chen, Y., Paul, G., Havlin, S., Liljeros, F., and Stanley, H. E. (2008). Finding a better immunization strategy. Physical Review Letters 101, 058701.CrossRefGoogle ScholarPubMed
Chuang, J. and Sirbu, M. A. (1998). Pricing multicast communication: A cost-based approach. Proceedings of the INET'98.Google Scholar
Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review 51, 4, 661-703.CrossRefGoogle Scholar
Cohen, J. W. (1969). The Single Server Queue. (North-Holland Publishing Company, Amsterdam).Google Scholar
Cohen, R. and Havlin, S. (2010). Complex Networks: Structure, Robustness and Function. (Cambridge University Press, Cambridge, U. K.).CrossRefGoogle Scholar
Cohen-Tannoudji, C., Diu, B., and Laloë, F. (1977). Mécanique Quantique. Vol. I and II. (Hermann, Paris).Google Scholar
Comtet, L. (1974). Advanced Combinatorics, revised and enlarged edn. (D. Riedel Publishing Company, Dordrecht, Holland).CrossRefGoogle Scholar
Coppersmith, D. and Sorkin, G. B. (1999). Constructive bounds and exact expectations for the random assignment problem. Random Structures and Algorithms 15, 2, 113-144.3.0.CO;2-S>CrossRefGoogle Scholar
Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1991). An Introduction to Algorithms. (MIT Press, Boston).Google Scholar
Courant, R. and Hilbert, D. (1953a). Methods of Mathematical Physics, first English edition, translated and revised from the German original of Springer in 1937 edn. Wiley Classic Library, vol. II. (Interscience, New York).Google Scholar
Courant, R. and Hilbert, D. (1953b). Methods of Mathematical Physics, first English edition, translated and revised from the German original of Springer in 1937 edn. Wiley Classic Library, vol. I. (Interscience, New York).Google Scholar
Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley Series in Telecommunications, (John Wiley & Sons, New York).CrossRefGoogle Scholar
Cramér, H. (1999). Mathematical Methods of Statistics, 19th edn. (Princeton Landmarks in Mathematics, Princeton, N. J.).Google Scholar
Crow, E. L. and Shimizu, K. (1988). Lognormal distributions, Theory and Applications. (Marcel Dekker, Inc., New York).Google Scholar
Cvetković, D. M., Doob, M., and Sachs, H. (1995). Spectra of Graphs, Theory and Applications, third edn. (Johann Ambrosius Barth Verlag, Heidelberg).Google Scholar
Da F. Costa, L., Rodrigues, F. A., Travieso, G., and Boas, P. R. V. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics 56, 1 (Februari), 167-242.Google Scholar
Daley, D. J. and Gani, J. (1999). Epidemic modelling: An Introduction.(Cambridge University Press, Cambridge, U. K.).CrossRefGoogle Scholar
Darabi Sahneh, F. and Scoglio, C. (2011). Epidemic spread in human networks. 50th IEEE Conference on Decision and Control, Orlando, FL, USA; also on arXiv:1107.2464v1.Google Scholar
Darabi Sahneh, F., Scoglio, C., and Van Mieghem, P. (2013). Generalized epidemic mean-field model for spreading processes over multi-layer complex networks. IEEE/A CM Transactionon Networking 21, 5 (October), 1609-1620.Google Scholar
Dehmer, M. and Emmert-Streib, F. (2009). Analysis of Complex Networks. (Wiley-VCH Verlag GmbH& Co., Weinheim).CrossRefGoogle Scholar
Diekmann, O., Heesterbeek, H., and Britton, T. (2012). Mathematical Tools for Understanding Infectious Disease Dynamics. (Princeton University Press, Princeton, USA).CrossRefGoogle Scholar
Doerr, C., Blenn, N., and Van Mieghem, P. (2013). Lognormal infection times of online information spread. PLoS ONE 8, 5 (May), e64349.CrossRefGoogle ScholarPubMed
Dorogovtsev, S. N. and Mendes, J. F. F. (2003). Evolution of Networks, From Biological Nets to the Internet and WWW. (Oxford University Press, Oxford).CrossRefGoogle Scholar
Draief, M. and Massoulié, L. (2010). Epidemics and Rumours in Complex Networks. London Mathematical Society Lecture Node Series: 369, (Cambridge University Press, Cambridge, UK).Google Scholar
Embrechts, P., Klüppelberg, C., and Mikosch, T. (2001a). Modelling Extremal Events for Insurance and Finance, 3rd edn. (Springer-Verlag, Berlin).Google Scholar
Embrechts, P., McNeil, A., and Straumann, D. (2001b). Correlation and Dependence in Risk Management: Properties and Pitfalls. Risk Management: Value at Risk and Beyond, ed. M., Dempster and H. K., Moffatt, (Cambridge University Press, Cambridge, UK).Google Scholar
Erdős, P. and Rényi, A. (1959). On random graphs. Publicationes Mathematicae Debrecen 6, 290-297.Google Scholar
Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 5, 17-61.Google Scholar
Estrada, E. (2012). The Structure of Complex Networks. (Oxford University Press, Oxford, U.K.).Google Scholar
Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999). On power-law relationships of the Internet Topology. Proceedings of A CM SIGCOMM'99, Cambridge, MA, 251-262.Google Scholar
Feld, S. L. (1991). Why your friends have more friends than you do. American Journal of Sociology 96, 6 (May), 1464-1477.CrossRefGoogle Scholar
Feller, W. (1970). An Introduction to Probability Theory and Its Applications, 3rd edn. Vol. 1. (John Wiley & Sons, New York).Google Scholar
Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 2nd edn. Vol. 2. (John Wiley & Sons, New York).Google Scholar
Fetter, A. L. and Walecka, J. D. (1971). Quantum Theory of Many-particle Systems. (McGraw-Hill, San Francisco).Google Scholar
Floyd, S. and Paxson, V. (2001). Difficultiesinsimulating the Internet. IEEE Transactions on Networking 9, 4 (August), 392-403.CrossRefGoogle Scholar
Fortz, B. and Thorup, M. (2000). Internet traic engineering by optimizing OSPF weights. IEEE INFOCOM2000.Google Scholar
Frieze, A. M. (1985). On the value of a random minimum spanning tree problem. Discrete Applied Mathematics 10, 47-56.CrossRefGoogle Scholar
Gallager, R. G. (1996). Discrete Stochastic Processes. (Kluwer Academic Publishers, Boston).CrossRefGoogle Scholar
Ganesh, A., Massoulié, L., and Towsley, D. (2005). The effect of network topology on the spread of epidemics. IEEE INFOCOM2005.Google Scholar
Gantmacher, F. R. (1959a). The Theory of Matrices. Vol. I. (Chelsea Publishing Company, New York).Google Scholar
Gantmacher, F. R. (1959b). The Theory of Matrices. Vol. II. (Chelsea Publishing Company, New York).Google Scholar
Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem ambientium. (Hamburgi sumtibus Frid. Perthes et I. H. Besser).Google Scholar
Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimus obnoxiae. Pars prior. Gauss Werke 4, 3-26.Google Scholar
Gibrat, R. (1930). Une loi des répartitions economique: l'effect proportionnel. Bulletin de la Statistique Générale de la France 19, 469-514.Google Scholar
Gilbert, E. N. (1956). Enumeration of labelled graphs. Canadian Journal of Mathematics 8, 405-411.CrossRefGoogle Scholar
Gnedenko, B. V. and Kovalenko, I. N. (1989). Introduction to Queuing Theory, 2nd edn. (Birkhauser, Boston).CrossRefGoogle Scholar
Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, 3rd edn. (The John Hopkins University Press, Baltimore).Google Scholar
Goulden, I. P. and Jackson, D. M. (1983). Combinatorial Enumeration. (John Wiley & Sons, New York).Google Scholar
Gourdin, E., Omic, J., and Mieghem, P. V. (2011). Optimization of network protection against virus spread. 8th International Workshop on Design of Reliable Communication Networks (DRCN 2011), Krakow, Poland.Google Scholar
Grimmett, G. R. (1989). Percolation. (Springer-Verlag, New York).Google Scholar
Grimmett, G. R. and Stirzacker, D. (2001). Probability and Random Processes, 3rd edn. (Oxford University Press, Oxford).Google Scholar
Guo, D., Trajanovski, S., van de Bovenkamp, R., Wang, H., and Van Mieghem, P. (2013). Epidemic threshold and topological structure of Susceptible-Infectious-Susceptible epidemics in adaptive networks. Physical Review E 88, 4 (October), 042802.CrossRefGoogle ScholarPubMed
Haccou, P., Jagers, P., and Vatutin, V. A. (2005). Branching processes: Variation, Growth and Extinction of Populations. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Hardy, G. H. (1948). Divergent Series. (Oxford University Press, London).Google Scholar
Hardy, G. H. (1978). Ramanujan, 3rd edn. (Chelsea Publishing Company, New York).Google Scholar
Hardy, G. H., Littlewood, J. E., and Polya, G. (1999). Inequalities, 2nd edn. (Cambridge University Press, Cambridge, UK).Google Scholar
Hardy, G. H. and Wright, E. M. (1968). An Introduction to the Theory of Numbers, 4th edn. (Oxford University Press, London).Google Scholar
Harris, T. E. (1963). The Theory of Branching Processes. (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Harrison, J. M. (1990). Brownian Motion and Stochastic Flow Systems. (Krieger Publishing Company, Malabar, Florida).Google Scholar
Hooghiemstra, G. and Koole, G. (2000). On the convergence of the power series algorithm. Performance Evaluation 42, 21-39.CrossRefGoogle Scholar
Hooghiemstra, G. and Van Mieghem, P. (2001). Delay distributions on ixed Internet paths. Delft University of Technology, Report20011020 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).Google Scholar
Hooghiemstra, G. and Van Mieghem, P. (2005). On the mean distance in scale free graphs. Methodology and Computing in Applied Probability (MCAP) 7, 285-306.Google Scholar
Hooghiemstra, G. and Van Mieghem, P. (2008). The weight and hopcount of the shortest path in the complete graph with exponential weights. Combinatorics, Probability and Computing 17, 4, 537-548.CrossRefGoogle Scholar
Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. (Cambridge University Press, Cambridge, U.K.).CrossRefGoogle Scholar
Iribarren, J. L. and Moro, E. (2011). Branching dynamics of viral information spreading. Physical Review E 84, 04116.CrossRefGoogle ScholarPubMed
Jamin, S., C. Jin, A. R.Kurc, D. R., and Shavitt, Y. (2001). Constrained mirror placement on the Internet. IEEE INFOCOM2001.Google Scholar
Janic, M., Kuipers, F. A., Zhou, X., and Van Mieghem, P. (2002). Implications for QoS provisioning based on traceroute measurements. Proceedings of 3rd International Workshop on Quality of Future Internet Services, QofIS2002, ed. B. Stiller et al., Zurich, Switzerland; Springer Verlag LNCS 2511, 3-14.Google Scholar
Janson, S. (1995). The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph. Random Structures and Algorithms 7, 4 (December), 337-356.CrossRefGoogle Scholar
Janson, S. (2002). On concentration of probability. Contemporary Combinatorics; ed. B. Bollobas, Bolyai Soc. Math. Stud. 10, Janos Bolyai Mathematical Society, Budapest, 289-301.Google Scholar
Janson, S., Knuth, D. E., Luczak, T., and Pittel, B. (1993). The birth of the giant component. Random Structures and Algorithms 4, 3, 233-358.CrossRefGoogle Scholar
Karlin, S. and McGregor, J. (1959). Random walks. Illinois Journal of Mathematics 3, 1, 66-81.Google Scholar
Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd edn. (Academic Press, San Diego).Google Scholar
Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes. (Academic Press, San Diego).Google Scholar
Karrer, B. and Newman, M. E. J. (2010). A message passing approach for general epidemic models,. Physical Review E 82, 016101.CrossRefGoogle ScholarPubMed
Keeling, M. J. and Rohani, P. (2008). Modeling Infectious diseases in Humans and Animals. (Princeton University Press, Princeton, USA).Google Scholar
Kelly, F. P. (1991). Special invited paper: Loss networks. The Annals of Applied Probability 1, 3, 319-378.CrossRefGoogle Scholar
Kendall, D. G. (1948). On the generalized birth-and-death process. Annals of Mathematical Statistics 19, 1, 1-15.CrossRefGoogle Scholar
Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society London, A 115, 700-721.CrossRefGoogle Scholar
Kleinrock, L. (1975). Queueing Systems. Vol. 1 – Theory. (John Wiley and Sons, New York).Google Scholar
Kleinrock, L. (1976). Queueing Systems. Vol. 2 – Computer Applications. (John Wiley and Sons, New York).Google Scholar
Kooij, R., Schumm, P., Scoglio, C., and Youssef, M. (2009). A new metric for robustness with respect to virus spread. Networking 2009, LNCS 5550, 562-572.Google Scholar
Krishnan, P., Raz, D., and Shavitt, Y. (2000). The cache location problem. IEEE/ACM Transactions on Networking 8, 5 (October), 586–582.CrossRefGoogle Scholar
Kuipers, F. A. and Van Mieghem, P. (2003). The impact of correlated link weights on QoS routing. IEEE INFOCOM2003.Google Scholar
Lanczos, C. (1988). Applied Analysis. (Dover Publications, Inc., New York).Google Scholar
Langville, A. N. and Meyer, C. D. (2005). Deeper inside Page Rank. Internet Mathematics 1, 3 (Februari), 335-380.Google Scholar
Leadbetter, M. R., Lindgren, G., and Rootzen, H. (1983). Extremes and Related Properties of Random Sequences and Processes. (Springer-Verlag, New York).CrossRefGoogle Scholar
Lehmann, E. L. (1999). Elements of Large-Sample Theory. (Springer-Verlag, New York).CrossRefGoogle Scholar
Leon-Garcia, A. (1994). Probability and Random Processes for Electrical Engineering, 2nd edn. (Addison-Wesley, Reading, Massachusetts).Google Scholar
Li, C., van de Bovenkamp, R., and Van Mieghem, P. (2012). Susceptible-infected-susceptible model: A comparison N-intertwined and heterogeneous mean-ield approximations. Physical Review E 86, 2 (August), 026116.Google ScholarPubMed
Linusson, S. and Wästlund, J. (2004). A proof of Parisi's conjecture on the random assignment problem. Probability Theory and Related Fields 128, 419-440.CrossRefGoogle Scholar
Lovász, L. (1993). Random walks on graphs: A survey. Combinatorics 2, 1-46.Google Scholar
Mandelbrot, B. (1977). Fractal Geometry of Nature. (W. H. Freeman, New York).Google Scholar
Markushevich, A. I. (1985). Theory of Functions of a Complex Variable. Vol. I–III. (Chelsea Publishing Company, New York).Google Scholar
Marlow, N. A. (1967). A normal limit theorem for powersums of normal random variables. The Bell System Technical Journal 46, 9 (November), 2081-2089.CrossRefGoogle Scholar
Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia).CrossRefGoogle Scholar
Mitra, D. (1988). Stochastic theory of a fluid model of producers and consumers coupled by a bufer. Advances in Applied Probability 20, 646-676.CrossRefGoogle Scholar
Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 2 and 3, 161-179.CrossRefGoogle Scholar
Morse, P. M. and Feshbach, H. (1978). Methods of Theoretical Physics. (McGraw-Hill Book Company, New York).Google Scholar
Mountford, T., Mourrat, J.-C., Valesin, D., and Yao, Q. (2013). Exponential extinction time of the contact process on inite graphs. arXiv:1203.2972v1.Google Scholar
Nair, C., Prabhakar, B., and Sharma, M. (2005). Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures. Random Structures and Algorithms 27, 4, 413-444.CrossRefGoogle Scholar
Nelsen, R. B. (2006). An Introduction to Copulas, 2nd edn. (Springer, New York).Google Scholar
Neuts, M. F. (1989). Structured Stochastic Matrices of the M/G/1 Type and Their Applications. (Marcel Dekker Inc., New York).Google Scholar
Newman, M. E. J. (2002). The spread of epidemic disease on networks. Physical Review E 66, 016128.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E 67, 026126.CrossRefGoogle ScholarPubMed
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 103, 23 (June), 8577-8582.Google ScholarPubMed
Newman, M. E. J. (2010). Networks: An Introduction. (Oxford University Press, Oxford, U.K.).CrossRefGoogle Scholar
Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E 69, 026113.Google ScholarPubMed
Newman, M. E. J., Strogatz, S. H., and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E 64, 026118.CrossRefGoogle ScholarPubMed
Norros, I. (1994). A storage model with self-similar input. Queueing Systems 16, 3–4, 387-396.CrossRefGoogle Scholar
Omic, J., Martin Hernandez, J., and Van Mieghem, P. (2010). Network protection against worms and cascading failures using modularity partitioning. 22nd International Teletraffic Congress (ITC 22), Amsterdam, Netherlands.Google Scholar
Omic, J., Van Mieghem, P., and Orda, A. (2009). Game theory and computer viruses. IEEE Infocom2009.Google Scholar
Papoulis, A. and Unnikrishna Pillai, S. (2002). Probability, Random Variables, and Stochastic Processes, 4th edn. (McGraw-Hill, Boston).Google Scholar
Parisi, G. (1998). A conjecture on random bipartite matching. arXiv:cond-mat/9801176.Google Scholar
Pascal, B. (1954). Oeuvres Completes. Bibliothèque de la Pléade, (Gallimard, Paris).Google Scholar
Pastor-Satorras, R., Castellano, C., Van Mieghem, P., and Vespignani, A. (2014). Epidemic processes in complex networks. Review of Modern Physics.Google Scholar
Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic dynamics and endemic states in complex networks. Physical Review E 63, 066117.CrossRefGoogle ScholarPubMed
Paxson, V. (1997). End-to-end Routing Behavior in the Internet. IEEE/ACM Transactions on Networking 5, 5 (October), 601-615.CrossRefGoogle Scholar
Phillips, G., Schenker, S., and Tangmunarunkit, H. (1999). Scaling of multicast trees: Comments on the chuang-sirbu scaling law. ACM Sigcomm99.Google Scholar
Pietronero, L. and Schneider, W. (1990). Invasion percolation as a fractal growth problem. Physica A 170, 81-104.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C, 2nd edn. (Cambridge University Press, New York).Google Scholar
Radicchi, F., Fortunato, S., and Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientiic impact. Proceedings of the National Academy of Science of the USA (PNAS) 105, 45, 17268-17272.CrossRefGoogle Scholar
Rainville, E. D.(1960). Special Functions. (Chelsea Publishing Company, New York).Google Scholar
Riordan, J. (1968). Combinatorial Identities. (John Wiley & Sons, New York).Google Scholar
Roberts, J. W. (1991). Performance Evaluation and Design of Multiservice Networks. Information Technologies and Sciences, vol. COST 224. (Commission of the European Communities, Luxembourg).Google Scholar
Robinson, S. (2004). The prize of anarchy. SIAM News 37, 5 (June), 1-4.Google Scholar
Ross, S. M. (1996). Stochastic Processes, 2nd edn. (John Wiley & Sons, New York).Google Scholar
Royden, H. L. (1988). Real Analysis, 3rd edn. (Macmillan Publishing Company, New York).Google Scholar
Sansone, G. and Gerretsen, J. (1960). Lectures on the Theory of Functions of a Complex Variable. Vol. 1 and 2. (P. Noordhof, Groningen).Google Scholar
Schoutens, W. (2000). Stochastic Processes and Orthogonal Polynomials. (Springer-Verlag, New York).CrossRefGoogle Scholar
Shockley, W. (1957). On the statistics of individual variations of productivity in research laboratories. Proceedings of the Institute of Radio Engineers (IRE) 45, 3 (March), 279-290.Google Scholar
Siganos, G., Faloutsos, M., Faloutsos, P., and Faloutsos, C. (2003). Power laws and the AS-level Internet topology. IEEE/ACM Transactions on Networking 11, 4 (August), 514-524.CrossRefGoogle Scholar
Simon, P. L., Taylor, M., and Kiss, I. Z. (2011). Exact epidemic models on graphs using graph-automorphism driven lumping. Mathematical Biology 62, 479-507.CrossRefGoogle ScholarPubMed
Smythe, R. T. and Mahmoud, H. M. (1995). A survey of recursive trees. Theory of Probability and Mathematical Statistics 51, 1-27.Google Scholar
Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., and Paczuski, M. (2012). Percolation theory on interdependent networks based on epidemic spreading. Europhysics Letters (EPL) 97, 16006.CrossRefGoogle Scholar
Steyaert, B. and Bruneel, H. (1994). Analytic derivation of the cell loss probability ininite multiserver bufers, from ininite bufer results. Proceedings of the second workshop on performance modelling and evaluation of ATM networks, Bradford UK, 18.1-11.Google Scholar
Strecok, A. J. (1968). On the calculation of the inverse of the error function. Mathematics of Computation 22, 144-158.Google Scholar
Strogatz, S. H. (2001). Exploring complex networks. Nature 410, 8 (March), 268-276.CrossRefGoogle ScholarPubMed
Syski, R. (1986). Introduction to Congestion Theory in Telephone Systems, 2nd edn. Studies in Telecommunication, vol. 4. (North-Holland, Amsterdam).Google Scholar
Tang, S., Blenn, N., Doerr, C., and Van Mieghem, P. (2011). Digging in the Digg online social network. IEEE Transactions on Multimedia 13, 5 (October), 1163-1175.CrossRefGoogle Scholar
Taylor, H. M. and Karlin, S. (1984). An Introduction to Stochastic Modeling. (Academic Press, Boston).Google Scholar
Titchmarsh, E. C. (1948). Introduction to the Theory of Fourier Integrals, 2nd edn. (Oxford University Press, Ely House, London W.I).Google Scholar
Titchmarsh, E. C. (1964). The Theory of Functions. (Oxford University Press, Amen House, London).Google Scholar
Titchmarsh, E. C. and Heath-Brown, D. R. (1986). The Theory of the Zeta-function, 2nd edn. (Oxford Science Publications, Oxford).Google Scholar
Trajanovski, S., Kuipers, F. A., Martin-Hernandez, J., and Van Mieghem, P. (2013). Generating graphs that approach a prescribed modularity. Computer Communications 36, 363-372.CrossRefGoogle Scholar
Trajanovski, S., Wang, H., and Van Mieghem, P. (2012). Maximum modular graphs. The European Physical Journal B 85, 7, 244: 1-14.CrossRefGoogle Scholar
van den Broek, J. and Heesterbeek, H. (2007). Nonhomogeneous birth and death models for epidemic outbreak data. Biostatistics 8, 2, 453-467.CrossRefGoogle ScholarPubMed
van der Hofstad, R. (2013). Random Graphs and Complex Networks, notes at www. win.tue/rhofstad/NotesRGCN.pdf edn.).Google Scholar
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2001). First passage percolation on the random graph. Probability in the Engineering and Informational Sciences (PEIS) 15, 225-237.Google Scholar
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2002a). The flooding time in random graphs. Extremes 5, 2 (June), 111-129.Google Scholar
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2002b). On the covariance of the level sizes in recursive trees. Random Structures and Algorithms 20, 519-539.CrossRefGoogle Scholar
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2005). Distances in random graphs with inite variance degree. Random Structures and Algorithms 27, 1 (August), 76-123.CrossRefGoogle Scholar
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2006). Size and weight of shortest path trees with exponential link weights. Combinatorics, Probability and Computing 15, 903-926.CrossRefGoogle Scholar
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2007). The weight of the shortest path tree. Random Structures and Algorithms 30, 3, 359-379.CrossRefGoogle Scholar
van der Hofstad, R. and Litvak, N. (2013). Degree-degree dependencies in random graphs with heavy-tailed degrees. arXiv:1202.3071v5.Google Scholar
van Doorn, E. A. and Schrijner, P. (1995). Geometric ergodicity and quasi-stationarity in discrete-time birth-death processes. Journal of the Australian Mathematical Society, Series B 37, 121-144.CrossRefGoogle Scholar
Van Mieghem, P. (1996). The asymptotic behaviour of queueing systems: Large deviations theory and dominant pole approximation. Queueing Systems 23, 27-55.CrossRefGoogle Scholar
Van Mieghem, P. (2001). Paths in the simple random graph and the Waxman graph. Probability in the Engineering and Informational Sciences (PEIS) 15, 535-555.Google Scholar
Van Mieghem, P. (2004). The probability distribution of the hopcount to an anycast group. Delft University of Technology, Report 2003605 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).Google Scholar
Van Mieghem, P. (2005). The limit random variable W of a branching process. Delft University of Technology, Report 20050206 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).Google Scholar
Van Mieghem, P. (2010a). Data Communications Networking, 2nd edn. (Piet Van Mieghem, ISBN 978-94-91075-01-8, Delft).Google Scholar
Van Mieghem, P. (2010b). Weight of a link in a shortest path tree and the Dedekind Eta function. Random Structures and Algorithms 36, 3 (May), 341-371.Google Scholar
Van Mieghem, P. (2011). Graph Spectra for Complex Networks. (Cambridge University Press, Cambridge, U.K.).Google Scholar
Van Mieghem, P. (2012a). Epidemic phase transition of the SIS-type in networks. Europhysics Letters (EPL) 97, 48004.CrossRefGoogle Scholar
Van Mieghem, P. (2012b). Viral conductance of a network. Computer Communications 35, 12 (July), 1494-1509.CrossRefGoogle Scholar
Van Mieghem, P. (2013). Decay towards the overall-healthy state in SIS epidemics on networks. arXiv:1310.3980.Google Scholar
Van Mieghem, P. (2014). Exact Markovian SIR and SIS epidemics on networks and an upper bound for the epidemic threshold. Delft University of Technology, Report20140210 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports); arXiv:1402.1731.CrossRefGoogle Scholar
Van Mieghem, P., Blenn, N., and Doerr, C. (2011a). Lognormal distribution in the Digg online social network. European Physical Journal B 83, 2, 252-261.CrossRefGoogle Scholar
Van Mieghem, P. and Cator, E. (2012). Epidemics in networks with nodal self-infections and the epidemic threshold. Physical Review E 86, 1 (July), 016116.CrossRefGoogle Scholar
Van Mieghem, P., Doerr, C., Wang, H., Hernandez, J. M., Hutchison, D., Karaliopoulos, M., and Kooij, R. E. (2010a). A framework for computing topological network robustness. Delft University of Technology, Report20101218 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).Google Scholar
Van Mieghem, P., Ge, X., Schumm, P., Trajanovski, S., and Wang, H. (2010b). Spectral graph analysis of modularity and assortativity. Physical Review E 82, 5 (November), 056113.CrossRefGoogle ScholarPubMed
Van Mieghem, P., Hooghiemstra, G., and van der Hofstad, R. (2000). A scaling law for the hopcount in the Internet. Delft University of Technology, Report2000125 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).Google Scholar
Van Mieghem, P., Hooghiemstra, G., and van der Hofstad, R. (2001a). On the efficiency of multicast. IEEE/ACM Transactions on Networking 9, 6 (December), 719-732.CrossRefGoogle Scholar
Van Mieghem, P., Hooghiemstra, G., and van der Hofstad, R. W. (2001b). Stochastic model for the number of traversed routers in Internet. Proceedings of Passive and Active Measurement: PAM-2001, April 23-24, Amsterdam.Google Scholar
Van Mieghem, P. and Janic, M. (2002). Stability of a multicast tree. IEEE INFO-COM2002 2, 1099-1108.Google Scholar
Van Mieghem, P. and Magdalena, S. M. (2005). A phase transition in the link weight structure of networks. Physical Review E 72, 5 (November), 056138.CrossRefGoogle ScholarPubMed
Van Mieghem, P. and Omic, J. (2008). In-homogeneous virus spread in networks. Delft University of Technology, Report2008081 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports); arXiv:1306.2588.Google Scholar
Van Mieghem, P., Omic, J., and Kooij, R. E. (2009). Virus spread in networks. IEEE/ACM Transactions on Networking 17, 1 (Februari), 1-14.CrossRefGoogle Scholar
Van Mieghem, P., Stevanović, D., Kuipers, F. A., Li, C., van de Bovenkamp, R., Liu, D., and Wang, H. (2011b). Decreasing the spectral radius of a graph by link removals. Physical Review E 84, 1 (July), 016101.CrossRefGoogle ScholarPubMed
Van Mieghem, P. and Tang, S. (2008). Weight of the shortest path to the irst encountered peer in a peer group of size m. Probability in the Engineering and Informational Sciences (PEIS) 22, 37-52.Google Scholar
Van Mieghem, P. and Wang, H. (2009). The observable part of a network. IEEE/ACM Transactions on Networking 17, 1, 93-105.CrossRefGoogle Scholar
Van Mieghem, P., Wang, H., Ge, X., Tang, S., and Kuipers, F. A. (2010c). Influence of assortativity and degree-preserving rewiring on the spectra of networks. The European Physical Journal B 76, 4, 643-652.CrossRefGoogle Scholar
Vazquez, A., Rácz, B., Lukács, A., and Barabási, A.-L. (2007). Impact of non-Poissonian activity patterns on spreading processes. Physical Review Letters 98, 158702.CrossRefGoogle ScholarPubMed
Veres, A. and Boda, M. (2000). The chaotic nature of TCP congestion control. IEEE INFOCOM2000.Google Scholar
Walrand, J. (1988). An Introduction to Queueing Networks. (Prentice-Hall, New York).Google Scholar
Walrand, J. (1998). Communication Networks, A First Course, 2nd edn. (McGraw-Hill, Boston).Google Scholar
Wang, H., Li, Q., D'Agostino, G., Havlin, S., Stanley, H. E., and Van Mieghem, P. (2013). Efect of the interconnected network structure on the epidemic threshold. Physical Review E 88, 2 (022801).CrossRefGoogle Scholar
Wang, H. and Van Mieghem, P. (2010). Sampling networks by the union of m shortest path trees. Computer Networks 54, 1042-1053.CrossRefGoogle Scholar
Wang, H., Winterbach, W., and Van Mieghem, P. (2011). Assortativity of complementary graphs. The European Physical Journal B 83, 2, 203-214.CrossRefGoogle Scholar
Wang, Y., Chakrabarti, D., Wang, C., and Faloutsos, C. (2003). Epidemic spreading in real networks: An eigenvalue viewpoint. 22nd International Symposium on Reliable Distributed Systems (SRDS'03); IEEE Computer, 25-34.Google Scholar
Wästlund, J. (2006). Random assignment and shortest path problems. Proceedings of the Fourth Colloquium on Mathematics and Computer Science, Algorithms, Trees, Combinatorics and Probabilities; Institut Elie Cartan, Nancy, France.Google Scholar
Watson, G. N. (1995). A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library edn. (Cambridge University Press, Cambridge, UK).Google Scholar
Watts, D. J. (1999). Small Worlds, The Dynamics of Networks between Order and Randomness. (Princeton University Press, Princeton, New Jersey).Google Scholar
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of “small-worlds” networks. Nature 393, 440-442.CrossRefGoogle Scholar
Waxman, B. M. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6, 9 (December), 1617-1622.CrossRefGoogle Scholar
Weibull, W. (1951). A statistical distribution function of wide applicability. ASME Journal of Applied Mechanics, 293-297.Google Scholar
Whittaker, E. T. and Watson, G. N. (1996). A Course of Modern Analysis, Cambridge Mathematical Library edn. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem. (Oxford University Press, New York).Google Scholar
Woess, W. (2000). Random Walks on Infinite Graphs and Groups. (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
Woess, W. (2009). Denumerable Markov Chains. (European Mathematical Society, Zurich, Switzerland).CrossRefGoogle Scholar
Wolf, R. W. (1982). Poisson arrivals see time averages. Operations Research 30, 2 (April), 223-231.Google Scholar
Wolf, R. W. (1989). Stochastic Modeling and the Theory of Queues. (Prentice-Hall International Editions, New York).Google Scholar
Youssef, M., Kooij, R. E., and Scoglio, C. (2011). Viral conductance: Quantifying the robustness of networks with respect to spread of epidemics. Journal of Computational Science 2, 3 (August), 286-298.CrossRefGoogle Scholar
Youssef, M. and Scoglio, C. (2011). An individual-based approach to SIR epidemics in contact networks. Journal of Theoretical Biology 283, 136-144.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Piet Van Mieghem, Technische Universiteit Delft, The Netherlands
  • Book: Performance Analysis of Complex Networks and Systems
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107415874.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Piet Van Mieghem, Technische Universiteit Delft, The Netherlands
  • Book: Performance Analysis of Complex Networks and Systems
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107415874.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Piet Van Mieghem, Technische Universiteit Delft, The Netherlands
  • Book: Performance Analysis of Complex Networks and Systems
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107415874.023
Available formats
×