Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T10:19:16.167Z Has data issue: false hasContentIssue false

2 - Multicarrier signals

Published online by Cambridge University Press:  03 December 2009

Simon Litsyn
Affiliation:
Tel-Aviv University
Get access

Summary

In this chapter, I introduce the main issues we will deal with in the book. In Section 2.1, I describe a multicarrier (MC) communication system. I introduce the main stages that the signals undergo in MC systems and summarize advantages and drawbacks of this technology. Section 2.2 deals with formal definitions of the main notions related to peak power: peak-to-average power ratio, peak-to-mean envelope power ratio, and crest factor. In Section 2.3, I quantify the efficiency of power amplifiers and its dependence on the power of processed MC signals. Section 2.4 introduces nonlinear characteristics of power amplifiers and describes their influence on the performance of communication systems.

Model of multicarrier communication system

The basic concept behind multicarrier (MC) transmission is in dividing the available spectrum into subchannels, assigning a carrier to each of them, and distributing the information stream between subcarriers. Each carrier is modulated separately, and the superposition of the modulated signals is transmitted. Such a scheme has several benefits: if the subcarrier spacing is small enough, each subchannel exhibits a flat frequency response, thus making frequency-domain equalization easier. Each substream has a low bit rate, which means that the symbol has a considerable duration; this makes it less sensitive to impulse noise. When the number of subcarriers increases for properly chosen modulating functions, the spectrum approaches a rectangular shape. The multicarrier scheme shows a good modularity. For instance, the subcarriers exhibiting a disadvantageous signal-to-noise ratio (SNR) can be discarded. Moreover, it is possible to choose the constellation size (bit loading) and energy for each subcarrier, thus approaching the theoretical capacity of the channel.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Multicarrier signals
  • Simon Litsyn, Tel-Aviv University
  • Book: Peak Power Control in Multicarrier Communications
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618383.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Multicarrier signals
  • Simon Litsyn, Tel-Aviv University
  • Book: Peak Power Control in Multicarrier Communications
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618383.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Multicarrier signals
  • Simon Litsyn, Tel-Aviv University
  • Book: Peak Power Control in Multicarrier Communications
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511618383.003
Available formats
×