Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T17:23:28.172Z Has data issue: false hasContentIssue false

1 - Target: A Useful Model

Published online by Cambridge University Press:  28 July 2009

Néstor V. Torres
Affiliation:
Universidad de la Laguna, Tenerife
Eberhard O. Voit
Affiliation:
Medical University of South Carolina
Get access

Summary

CRITERIA FOR MODEL SELECTION

Before we get lost in the technical details of manipulating functions, approximating complicated phenomena, or designing and analyzing models, it is useful to establish more clearly what exactly our target is. At a superficial level, this is easily stated. Our target is a mathematical model of the biotechnological phenomenon of interest, and this model should be valid, yet convenient for analysis, manipulation, and optimization. Once we have such a model, we can screen hypotheses and perform test runs on the computer, which is much faster and cheaper than implementing and executing the actual experiments in the lab.

While the target is obvious, the difficulty is that no unique, optimal model entirely satisfies all items on our wish list. Why is that? The complications begin with the question of validity. What is a valid representation of a particular phenomenon? Although initially surprising, the question of validity is not something absolute. Instead, validity depends heavily on the purpose of the model analysis. A model for studying the aerodynamics of a butterfly will normally not account for the color patterns of its wings, and that is probably a valid omission. By contrast, the coloration may be crucial for ecological questions of camouflaging and predation by birds.

As a familiar, yet illustrative example, consider the growth of a bacterial population (Thornton 1922), as discussed by Lotka (1924, pp. 70–1; see Table 1.1 and Figure 1.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiba, S., and Shoda, M.: Reassessment of the product inhibition in alcohol fermentation. J. Ferment. Technol. Jpn. 47, 790–805, 1969Google Scholar
Aiba, S., Shoda, M., and Nagatani, M.: Kinetics of product inhibition in alcohol fermentation. Biotechnol. Bioeng. 10, 845–64, 1968CrossRefGoogle Scholar
Alberty, R. A.: Biochemical thermodynamics. Biochim. Biophys. Acta 1207, 1–11, 1994CrossRefGoogle Scholar
Alberty, R. A.: Calculation of biochemical net reactions and pathways by using matrix operations. Biophys. J. 71, 507–15, 1996CrossRefGoogle ScholarPubMed
Alberty, R. A., Calculation of equilibrium compositions of large systems of biochemical reactions. J. Phys. Chem. 104(19), 4808–14, 2000CrossRefGoogle Scholar
Bailey, J. E., and D. F. Ollis: Biochemical Engineering Fundamentals. McGraw-Hill, New York, 1977
Bode, H. W.: Network Analysis and Feedback Amplifier Design. Van Nostrand, Princeton, NJ, 1945
Briggs, G. E., and Haldane, J. B. S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–9, 1925CrossRefGoogle ScholarPubMed
Callen, H. B.: Thermodynamics, John Wiley & Sons, New York, 1960
Cascante, M., Sorribas, A., Franco, R., and Canela, E. I.: Biochemical systems theory: Increasing predictive power by using second-order derivatives measurementsJ. Theor. Biol. 149, 521–35, 1991CrossRefGoogle ScholarPubMed
Cha, S., and Cha, C.-J. M.: Kinetics of cyclic enzyme systems. Mol. Pharmacol. 1, 178–89, 1965Google ScholarPubMed
Clarke, B. L.: Stability of complex reaction networks. Adv. Chem. Phys. 43, 1–215, 1980Google Scholar
Corless, R. M., Gonnett, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E.: On the Lambert W function. Adv. Comp. Math. 5, 329–59, 1996CrossRefGoogle Scholar
Cornish-Bowden, A., and M. L. Cárdenas (Eds.): Control of Metabolic Processes, NATO ASI Series A (Vol. 190). Plenum Press, New York, 1990
Covert, M. W., C. H. Schilling, J. S. Edwards, I. Famili, and B.Ø. Palsson: Constraints-based metabolic analysis of Helicobacter pylori. Session 69 of the AIChE Annual Meeting, Los Angeles, CA, 2000
Curto, R., Voit, E. O., Sorribas, A., and Cascante, M.: Validation and steady-state analysis of a power-law model of purine metabolism. Biochem. J. 324, 761–75, 1997CrossRefGoogle ScholarPubMed
Curto, R., Voit, E. O., Sorribas, A., and Cascante, M.: Mathematical models of purine metabolism in man. Math. Biosci 151, 1–49, 1998aCrossRefGoogle Scholar
Curto, R., Voit, E. O., Sorribas, A., and Cascante, M.: Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man. Biochem. J. 329, 477–87, 1998bCrossRefGoogle Scholar
Danenberg, K. D., and Cleland, W. W.: Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Biochemistry 14(1), 28–39, 1975CrossRefGoogle ScholarPubMed
Duncan, T. M., and J. A. Reimer: Chemical Engineering Design and Analysis: An Introduction. Cambridge University Press, Cambridge, U.K., 1998
Edelstein-Keshet, L.: Mathematical Models in Biology, Birkhäuser Mathematics Series. McGraw-Hill, New York, 1988
Edwards, J. S., and Palsson, B.Ø.: The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528–33, 2000CrossRefGoogle ScholarPubMed
Fell, D. A.: Understanding the Control of Metabolism. Portland Press, London, 1997
Fell, D. A., and Sauro, H. M.: Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur. J. Biochem. 148, 555–61, 1985CrossRefGoogle ScholarPubMed
Fell, D. A., and Small, J. R.: Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238, 781–6, 1986CrossRefGoogle ScholarPubMed
Fermi, E.: Thermodynamics. Dover, New York, 1956 (originally published in 1937)
Galazzo, J. L., and Bailey, J. E.: Fermentation pathway kinetics and metabolic flux control in suspended and immobilized S. cerevisiae. Enzyme Microbiol. Technol. 12, 162–72, 1990CrossRefGoogle Scholar
Galazzo, J. L., and Bailey, J. E.: Errata. Enzyme Microbiol. Technol. 13, 363–71, 1991Google Scholar
Garfinkel, D.: The role of computer simulation in biochemistry. Comp. Biomed. Res. 2(1), 31–44, 1968CrossRefGoogle ScholarPubMed
Garfinkel, D.: Computer modeling, complex biological systems, and their simplifications. Am. J. Phys. 239(1), R1–6, 1980Google ScholarPubMed
Garfinkel, D.: Computer-based modeling of biological systems which are inherently complex: Problems, strategies, and methods. Biomed. Biochim. Acta 44(6), 823–9, 1985Google ScholarPubMed
Gavalas, G. R.: Nonlinear Differential Equations of Chemically Reacting Systems. Springer-Verlag, Berlin, 1968
Gerthsen, C., and H. O. Kneser: Physik (11th ed.). Springer-Verlag, Berlin, 1971
Giersch, C.: Control analysis of metabolic networks. 2. Total differentials and general formulation of the connectivity relations. Eur. J. Biochem. 174, 515–19, 1988CrossRefGoogle Scholar
Glansdorff, P., and I. Prigogine: Thermodynamics of Structure, Stability, and Fluctuations. Wiley, New York, 1971
Goldbeter, A.: Biochemical Oscillations and Biological Rhythms. Cambridge University Press, Cambridge, U.K., 1996
Goldstein, A.: The mechanism of enzyme-inhibitor-substrate reactions. J. Gen. Physiol. 27, 529–80, 1944CrossRefGoogle ScholarPubMed
Heijnen, J. J.: Stoichiometry and kinetics of microbial growth from a thermodynamic perspective. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 3). Cambridge University Press, Cambridge, U.K., 2001
Heinrich, R., and Rapoport, T. A.: A linear steady-state treatment of enzymatic chains: General properties, control and effector strength. Eur. J. Biochem. 42, 89–95, 1974CrossRefGoogle ScholarPubMed
Heinrich, R., and S. Schuster: The Regulation of Cellular Systems. Chapman and Hall, New York, 1996
Heinrich, R., and Schuster, S.: The modeling of metabolic systems. Structure, control, and optimality. BioSystems 47, 61–77, 1998CrossRefGoogle Scholar
Heinrich, R., Rapoport, S. M., and Rapoport, T. A.: Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32, 1–82, 1977CrossRefGoogle ScholarPubMed
Henri, M. V.: Lois générales de l'action des diastases. Hermann, Paris, 1903
Hess, B.: Periodical patterns in biochemical reactions. Quart. Rev. Biophys. 30, 121–76, 1997CrossRefGoogle Scholar
Hill, C. M., Waight, R. D., and Bardsley, W. G.: Does any enzyme follow the Michaelis-Menten equation?Mol. Cell. Biochem. 15, 173–8, 1977CrossRefGoogle ScholarPubMed
Horn, F., and Jackson, R.: General mass action kinetics. Arch. Rational Mech. Anal. 47, 81–116, 1972CrossRefGoogle Scholar
Jacquez, J. A.: Compartmental Analysis in Biology and Medicine (3rd ed.). Thomson-Shore, Dexter, MI, 1996
Jorgensen, H., Nielsen, J., and Villadsen, J.: Metabolic flux distribution in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46, 117–31, 1995CrossRefGoogle Scholar
Jou, D., and J. E., Llebot: Introduction to the Thermodynamics of Biological Processes. Prentice Hall, Englewood Cliffs, NJ, 1990
Kacser, H., and Burns, J. A.: The control of flux. Symp. Soc. Exp. Biol. 27, 65–104, 1973Google ScholarPubMed
Kacser, H., Sauro, H. M., and Acerenza, L.: Enzyme-enzyme interactions and control analysis. Eur. J. Biochem. 187, 481–91, 1990CrossRefGoogle ScholarPubMed
Katchalsky, A., and P. F. Curran: Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, MA, 1967
Kestin, J.: A Course in Thermodynamics. Blaisdell Publishing Company, Waltham, MA, 1966
Kohen, E., C. Kohen, B. Thorell, and G. Wagner: Quantitative aspects of rapid microfluorometry for the study of enzyme reactions and transport mechanisms in single living cells. In: A. A. Thaer and M. Sernetz (Eds.), Fluorescence Techniques in Cell Biology. Springer-Verlag, New York, pp. 207–18, 1973
Kohen, E., Thorell, B., Kohen, C., and Solmon, J. M.: Studies on metabolic events in localized compartments of the living cell by rapid microspectro-fluorometry. Adv. Biol. Med. Phys. 15, 271–97, 1974CrossRefGoogle Scholar
Lotka, A. J.: Elements of Physical Biology. Williams and Wilkins, Baltimore, 1924 (reprinted as Elements of Mathematical Biology, Dover, New York, 1956)
Mavrovouniotis, M. L., Stephanopoulos, G., and Stephanopoulos, G.: Computer-aided synthesis of biochemical pathways. Biotechn. Bioeng. 36, 1119–32, 1990CrossRefGoogle ScholarPubMed
Michaelis, L., and Menten, M. L.: Die Kinetik der Invertinwirkung. Biochem. Zeitschrift 49, 333–69, 1913Google Scholar
Nielsen, J.: Microbial process kinetics. In: C. Ratledge and B. Kristiansen (Eds.), Basic Biotechnology (Chapter 6). Cambridge University Press, Cambridge, U.K., 2001
Ogata, K.: Modern Control Engineering (2nd ed.). Englewood Cliffs, NJ: Prentice Hall, 1990
Papoutsakis, E. T.: Equations and calculations for fermentations of butyric acid bacteriaBiotechnol. Bioeng. 26, 174–87, 1984CrossRefGoogle ScholarPubMed
Papoutsakis, E. T., and Meyer, C. L.: Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol. Bioeng. 27, 50–66, 1985CrossRefGoogle ScholarPubMed
Peschel, M., and W. Mende: The Predator-Prey Model: Do We Live in a Volterra World? Akademie-Verlag, Berlin, 1986
Planck, M.: Treatise on Thermodynamics (3rd ed.). Dover, New York, 1945 (translated from the 7th German edition with the author's sanction by Alexander Ogg)
Pons, A., Dussap, C. G., Pequignot, C., and Gros, J. B.: Metabolic flux distribution in Cornybacterium melassecola ATCC 17965 for various carbon sources. Biotechnol. Bioeng. 51, 177–89, 19963.0.CO;2-G>CrossRefGoogle Scholar
Pramanik, J., and Keasling, J. D.: Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56, 398–421, 19973.0.CO;2-J>CrossRefGoogle ScholarPubMed
Prigogine, I.: Étude Thermodynamique des Processus Irreversibles. Desoer, Liège, 1947 (Introduction to the Thermodynamics of Irreversible Processes, Thomas, Springfield, IL, 1955)
Reder, C.: Metabolic control theory: A structural approach. J. Theor. Biol. 135, 175–201, 1988CrossRefGoogle ScholarPubMed
Reiner, J. M.: Behavior of Enzyme Systems. Van Nostrand Reinhold, New York, 1969
Ricard, J.: Biological Complexity and the Dynamics of Life Processes. Elsevier, Amsterdam, 1999
Richter., P. H., Procaccia, I., and Ross, J.: Chemical instabilities. Adv. Chem. Phys. 43, 217–68, 1980Google Scholar
Roberts, D. V.: Enzyme Kinetics. Cambridge University Press, Cambridge, U.K., 1977
Sauro, H. M., Small, J. R., and Fell, D. A.: Metabolic control and its analysis. Extensions to the theory and matrix methods. Eur. J. Biochem. 165, 215–22, 1987CrossRefGoogle Scholar
Savageau, M. A., Biochemical systems analysis, I. Some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol. 25, 365–9, 1969aCrossRefGoogle Scholar
Savageau, M. A., Biochemical systems analysis, II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–9, 1969bCrossRefGoogle Scholar
Savageau, M. A., Biochemical systems analysis, III. Dynamic solutions using a power-law approximation. J. Theor. Biol. 26, 215–26, 1970CrossRefGoogle Scholar
Savageau, M. A.: Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA, 1976
Savageau, M. A.: Growth of complex systems can be related to the properties of their underlying determinants. Proc. Natl. Acad. Sci. USA 76, 5413–17, 1979aCrossRefGoogle Scholar
Savageau, M. A.: Allometric morphogenesis of complex systems: Derivation of the basic equations from first principles. Proc. Natl. Acad. Sci. USA 76, 6023–5, 1979bCrossRefGoogle Scholar
Savageau, M. A.: Mathematics of organizationally complex systems. Biomed. Biochim. Acta 44, 839–44, 1985Google ScholarPubMed
Savageau, M. A., Biochemical systems theory: Operational differences among variant representations and their significance. J. Theor. Biol. 151, 509–30, 1991CrossRefGoogle ScholarPubMed
Savageau, M. A.: Critique of the enzymologist's test tube. In: E. E. Bittar (Ed.), Fundamentals of Medical Cell Biology (Vol. 3A, pp. 45–108). JAI Press, Greenwich, CT, 1992a
Savageau, M. A.: Dominance according to metabolic control analysis: Major achievement or house of cards?J. Theor. Biol. 154, 131–6, 1992bCrossRefGoogle Scholar
Savageau, M. A.: Design principles for elementary gene circuits: Elements, methods, and examples. Chaos II, 142–59, 2001CrossRefGoogle Scholar
Savageau, M. A., Voit, E. O., and Irvine, D. H.: Biochemical systems theory and metabolic control theory. I. Fundamental similarities and differences. Math. Biosci. 86, 127–45, 1987aCrossRefGoogle Scholar
Savageau, M. A., Michaelis-Menten mechanism reconsidered: Implications of fractal kinetics. J. Theor. Biol. 176, 115–24, 1995aCrossRefGoogle Scholar
Savageau, M. A.: Enzyme kinetics in vitro and in vivo: Michaelis-Menten revisited. In: E. E. Bittar (Ed.), Principles of Medical Biology (Vol. 4, pp. 93–146). JAI Press, Greenwich, CT, 1995b
Savageau, M. A., and Sorribas, A.: Constraints among molecular and systemic properties: Implications for physiological genetics. J. Theor. Biol. 141, 93–115, 1989CrossRefGoogle ScholarPubMed
Savageau, M. A., and Voit, E. O.: Recasting nonlinear differential equations as S-systems: A canonical form. Mathem. Biosci. 87, 83–115, 1987CrossRefGoogle Scholar
Savageau, M. A., Voit, E. O., and Irvine, D. H.: Biochemical systems theory and metabolic control theory. II. The role of summation and connectivity relationships. Math. Biosci. 86, 147–69, 1987bCrossRefGoogle Scholar
Savinell, J. M.: Analysis of Stoichiometry in Metabolic Networks. Ph.D. dissertation, University of Michigan, 1991
Savinell, J. M., and Palsson, B.Ø.: Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J. Theor. Biol. 154(4), 421–54, 1992aCrossRefGoogle Scholar
Savinell, J. M., and Palsson, B.Ø.: Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism. J. Theor. Biol. 154(4), 455–73, 1992bCrossRefGoogle Scholar
Savinell, J. M., and Palsson, B.Ø.: Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. J. Theor. Biol. 155(2), 201–14, 1992cCrossRefGoogle Scholar
Savinell, J. M., and Palsson, B.Ø.: Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J. Theor. Biol. 155(2), 215–42, 1992dCrossRefGoogle Scholar
Schauer, M., and Heinrich, R.: Quasi-steady-state approximation in the mathematical modeling of biochemical reaction networks. Math. Biosci. 65, 155–70, 1983CrossRefGoogle Scholar
Schilling, C. H., and Palsson, B.Ø.: The underlying pathway structure of biochemical reaction networks. Proc. Natl. Acad. Sci. USA 95(8), 4193–8, 1998CrossRefGoogle ScholarPubMed
Schilling, C. H., and Palsson, B.Ø.: Assessment of metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203, 249–83, 2000CrossRefGoogle ScholarPubMed
Schilling, C. H., Schuster, S., Palsson, B.Ø., and Heinrich, R.: Metabolic pathway analysis: Basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15(3), 296–303, 1999CrossRefGoogle ScholarPubMed
Schilling, C. H., Letscher, D., and Palsson, B.Ø.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248, 2000CrossRefGoogle ScholarPubMed
Schnell, S., and Maini, P. K.: Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–99, 2000CrossRefGoogle ScholarPubMed
Schnell, S., and Mendoza, C.: Closed-form solution for time-dependent enzyme kinetics. J. Theor. Biol. 187, 207–12, 1997CrossRefGoogle Scholar
Schulz, A. R.: Enzyme Kinetics. From Diastase to Multi-enzyme Systems. Cambridge University Press, Cambridge, U.K., 1994
Segel, L. A., On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–93, 1988CrossRefGoogle ScholarPubMed
Segel, L. A.: Biological Kinetics. Cambridge University Press, Cambridge, U.K., 1991
Segel, L. A., and Slemrod, M.: The quasi-steady-state assumption: A case study in perturbation. SIAM Rev. 31, 446–77, 1989CrossRefGoogle Scholar
Seressiotis, A., and Bailey, J. E.: MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31, 587–602, 1988CrossRefGoogle ScholarPubMed
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations. J. Biol. Chem. 267, 22912–18, 1992aGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness. J. Biol. Chem. 267, 22919–25, 1992bGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. III. Analysis of steady state and dynamic behaviour. J. Biol. Chem. 267, 22926–33, 1992cGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. IV. Resolution of discrepancies between alterntative methods of analysis. J. Biol. Chem. 267, 22934–43, 1992dGoogle Scholar
Shiraishi, F., and Savageau, M. A.: The tricarboxylic acid cycle in Dictyostelium discoideum. V. Systemic effects of including protein turnover in the current model. J. Biol. Chem. 268, 16917–28, 1993Google Scholar
Sols, A., and Marco, R.: Concentrations of metabolites and binding sites. Implications in metabolic regulation. Curr. Top. Cell. Reg. 2, 227–73, 1970CrossRefGoogle Scholar
Sorribas, A., March, J., and Voit, E. O.: Estimating age-related trends in cross-sectional studies using S-distributions. Stat. Med. 10(5), 697–713, 20003.0.CO;2-Y>CrossRefGoogle Scholar
Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen: Metabolic Engineering. Principles and Methodologies. Academic Press, San Diego, CA, 1998
Thornton, H. G.: On the development of a standardised Agar medium for counting soil bacteria, with especial regard to the repression of spreading colonies. Ann. Appl. Biol. IX, 241–74, 1922CrossRefGoogle Scholar
Tsai, S. P., and Lee, Y. H.: Application of Gibbs' rule and a simple pathway method to microbial stoichiometry. Biotechnol. Prog. 4(2), 82–8, 1988CrossRefGoogle Scholar
Tyson, J. J.: The Belousov-Zhabotinskii Reaction. Lecture Notes in Biomathematics (Vol. 10). Springer Verlag, Berlin, 1976
Vallino, J. J., and Stephanopoulos, G.: Metabolic flux distribution in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41, 633–46, 1993CrossRefGoogle Scholar
Varma, A., and Palsson, B.Ø.: Parametric sensitivity of stoichiometric flux balance models applied to wild-type Escherichia coli metabolism. Biotechnol. Bioeng. 45, 69–79, 1995CrossRefGoogle ScholarPubMed
Varma, A., Boesch, B. W., and Palsson, B.Ø.: Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42, 59–73, 1993CrossRefGoogle ScholarPubMed
Varma, A., Boesch, B. W., and Palsson, B.Ø.: Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technol. 12, 994–8, 1994CrossRefGoogle Scholar
Voit, E. O. (Ed.): Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity, (ⅺ + 365 pp.). Van Nostrand Reinhold, New York, 1991
Voit, E. O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (ⅻ 530 pp.). Cambridge University Press, Cambridge, U.K., 2000a
Voit, E. O.: Canonical modeling: A review of concepts with emphasis on environmental health. Environ. Health Perspect. 108 (Suppl. 5): (Mathematical Modeling in Environmental Health Studies), 895–909, 2000bCrossRefGoogle Scholar
Voit, E. O., and Savageau, M. A.: Accuracy of alternative representations for integrated biochemical systems. Biochem. 26, 6869–80, 1987CrossRefGoogle ScholarPubMed
Waller, K. V., and Mäkllä, P. M.: Chemical reaction invariants and variants and their use in reactor modeling, simulation, and control. Ind. Eng. Chem. Proc. Des. Dev. 20, 1–11, 1981CrossRefGoogle Scholar
Westerhoff, H. V., and K. van Dam: Thermodynamics and Control of Biological Free-Energy Transduction. Elsevier, Amsterdam, 1987
Woolfolk, C. A., and Stadtman, E. R.: Regulation of glutamine synthetase. III. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli. Arch. Biochem. Biophys. 118, 736–55, 1967CrossRefGoogle Scholar
Wright, B. E., Butler, M. H., and Albe, K. R.: Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction. J. Biol. Chem. 267, 3101–5, 1992Google ScholarPubMed
Wright, E. M.: Solution of the equation z exp(z) = a. Proc. Roy. Soc. Edinburgh, A 65, 193–203, 1959Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Target: A Useful Model
  • Néstor V. Torres, Universidad de la Laguna, Tenerife, Eberhard O. Voit, Medical University of South Carolina
  • Book: Pathway Analysis and Optimization in Metabolic Engineering
  • Online publication: 28 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546334.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Target: A Useful Model
  • Néstor V. Torres, Universidad de la Laguna, Tenerife, Eberhard O. Voit, Medical University of South Carolina
  • Book: Pathway Analysis and Optimization in Metabolic Engineering
  • Online publication: 28 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546334.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Target: A Useful Model
  • Néstor V. Torres, Universidad de la Laguna, Tenerife, Eberhard O. Voit, Medical University of South Carolina
  • Book: Pathway Analysis and Optimization in Metabolic Engineering
  • Online publication: 28 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546334.002
Available formats
×