Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2013
  • Online publication date: April 2013

Chapter 5 - Has the renewed interest in sperm RNA led to fresh insights? A critical review and hypothesis

References

1. D’OcchioMJ, HengstbergerKJ, JohnstonSD. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Animal Reprod Sci. 2007;101(1–2):1–17.
2. BraunRE. Packaging paternal chromosomes with protamine. Nat Genet. 2001;28(1):10–12.
3. GuW, KwonYK, HechtNB. In postmeiotic male germ cells poly (a) shortening accompanies translation of mRNA encoding gamma enteric actin but not cytoplasmic beta and gamma actin mRNAs. Mol Reprod Dev. 1996;44(2):141–5.
4. Gardiner-GardenM, BallesterosM, GordonMet al. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol. 1998;18(6):3350–6.
5. HammoudSS, NixDA, ZhangHet al. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.
6. PittoggiC, RenziL, ZaccagniniGet al. A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. J Cell Sci. 1999;112(Pt 20):3537–48.
7. OlivaR. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.
8. HechtNB. Molecular mechanisms of male germ cell differentiation. Bioessays. 1998;20(7):555–61.
9. BalhornR. A model for the structure of chromatin in mammalian sperm. J Cell Biol. 1982;93(2):298–305.
10. KramerJA, McCarreyJR, DjakiewDet al. Human spermatogenesis as a model to examine gene potentiation. Mol Reprod Dev. 2000;56(S2):254–8.
11. JohnsonGD, LalancetteC, LinnemannAKet al. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction. 2011;141(1):21–36.
12. AbrahamKA, BhargavaPM. Nucleic acid metabolism of mammalian spermatozoa. Biochem J. 1963;86:298–307.
13. BhargavaPM. Incorporation of radioactive amino-acids in the proteins of bull spermatozoa. Nature. 1957;179(4570):1120–1.
14. MarkewitzM, GraffS, VeenemaRJ. Absence of RNA synthesis in shed human spermatozoa. Nature. 1967;214(86):402–3.
15. MacLaughlinJ, TernerC. Ribonucleic acid synthesis by spermatozoa from the rat and hamster. Biochem J. 1973;133:635–9.
16. PremkumarEB, BhargavaPM. Transcription and translation in bovine spermatozoa. Nat New Biol. 1972;240:139–43.
17. MillerD, BriggsD, SnowdenHet al. A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene. 1999;237(2):385–92.
18. FischerBE, WasbroughE, MeadowsLAet al. Conserved properties of drosophila and human spermatozoal mRNA repertoires. Proc Biol Sci. 2012;279(1738):2636–44.
19. DymM, FawcettDW. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod. 1971;4(2):195–215.
20. ClaytonAL, HazzalinCA, MahadevanLC. Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell. 2006;23(3):289–96.
21. OlivaR, Bazett-JonesDP, LocklearLet al. Histone hyperacetylation can induce unfolding of the nucleosome core particle. Nucleic Acids Res. 1990;18(9):2739–47.
22. RousseauxS, ReynoirdN, EscoffierEet al. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online. 2008;16(4):492–503.
23. HazzouriM, Pivot-PajotC, FaureAKet al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol. 2000;79(12):950–60.
24. KrawetzSA, KrugerA, LalancetteCet al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26(12):3401–12.
25. MillerD, OstermeierGC. Towards a better understanding of RNA carriage by ejaculate spermatozoa. Hum Reprod Update. 2006;12(6):757–67.
26. RejonE, BajonC, BlaizeAet al. RNA in the nucleus of a motile plant spermatozoid: characterization by enzyme-gold cytochemistry and in situ hybridization. Mol Reprod Devel. 1988;1:49–56.
27. PessotCA, BritoM, FigueroaJet al. Presence of RNA in the sperm nucleus. Biochem Biophysic Res Comms. 1989;158(1):272–8.
28. KumarG, PatelD, NazRK. C-myc messenger-RNA is present in human sperm cells. Cell Mol Biol Res. 1993;39(2):111–17.
29. HamataniT. Human spermatozoal RNAs. Fertil Steril. 2012;97(2):275–81.
30. MillerDJ. Physiology and endocrinology symposium: sperm-oviduct interactions in livestock and poultry. J Anim Sci. [Congresses]. 2011;89(5):1312–14.
31. LalancetteC, ThibaultC, BachandIet al. Transcriptome analysis of bull semen with extreme nonreturn rate: use of suppression-subtractive hybridization to identify functional markers for fertility. Biol Reprod. 2008;78(4):618–35.
32. LalancetteC, PlattsAE, JohnsonGDet al. Identification of human sperm transcripts as candidate markers of male fertility. J Mol Med. 2009;87(7):735–48.
33. GilbertI, BissonnetteN, BoissonneaultGet al. A molecular analysis of the population of mRNA in bovine spermatozoa. Reproduction. 2007;133(6):1073–86.
34. FeugangJM, Rodriguez-OsorioN, KayaAet al. Transcriptome analysis of bull spermatozoa: implications for male fertility. Reprod Biomed Online. 2010;21(3):312–24.
35. CurryE, EllisSE, PrattSL. Detection of porcine sperm microRNAs using a heterologous microRNA microarray and reverse transcriptase polymerase chain reaction. Mol Reprod Dev. 2009;76(3):218–19.
36. YangCC, LinYS, HsuCCet al. Identification and sequencing of remnant messenger RNAs found in domestic swine (Sus scrofa) fresh ejaculated spermatozoa. Animal Reprod Sci. 2009;113(1–4):143–55.
37. OstermeierGC, GoodrichRJ, DiamondMPet al. Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility. Fertil Steril. 2005;83(6):1687–94.
38. OstermeierGC, DixDJ, MillerDet al. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7.
39. Cappallo-ObermannH, SchulzeW, JastrowHet al. Highly purified spermatozoal RNA obtained by a novel method indicates an unusual 28s/18s rRNA ratio and suggests impaired ribosome assembly. Mol Hum Reprod. 2011;17(11):669–78.
40. JohnsonGD, SendlerE, LalancetteCet al. Cleavage of rRNA ensures translational cessation in sperm at fertilization. Mol Hum Reprod. 2011;17(12):721–6.
41. GurY, BreitbartH. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 2006;20(4):411–16.
42. NazRK. Effect of actinomycin d and cycloheximide on human sperm function. Arch Androl. 1998;41(2):135–42.
43. ZhaoC, GuoXJ, ShiZHet al. Role of translation by mitochondrial-type ribosomes during sperm capacitation: an analysis based on a proteomic approach. Proteomics. 2009;9(5):1385–99.
44. VillegasJ, ArayaP, Bustos-ObregonEet al. Localization of the 16s mitochondrial rRNA in the nucleus of mammalian spermatogenic cells. Mol Hum Reprod. 2002;8(11):977–83.
45. ZhaoY, LiQ, YaoCet al. Characterization and quantification of mRNA transcripts in ejaculated spermatozoa of fertile men by serial analysis of gene expression. Hum Reprod. 2006;21(6):1583–1590.
46. MillerD. Analysis and significance of messenger RNA in human ejaculated spermatozoa. Mol Reprod Dev. 2000;56(2 Suppl):259–64.
47. LiuWM, PangRT, ChiuPCet al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci USA. 2012;109(2):490–4.
48. Bourc’hisD, VoinnetO. A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science. 2010;330(6004):617–22.
49. RajasethupathyP, AntonovI, SheridanRet al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012;149(3):693–707.
50. Lykke-AndersenK, GilchristMJ, GrabarekJBet al. Maternal argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol Biol Cell. 2008;19(10):4383–92.
51. AmanaiM, BrahmajosyulaM, PerryAC. A restricted role for sperm-borne microRNAs in mammalian fertilization. Biol Reprod. 2006;75(6):877–84.
52. SotolongoB, HuangTT, IsenbergerEet al. An endogenous nuclease in hamster, mouse, and human spermatozoa cleaves DNA into loop-sized fragments. J Androl. 2005;26(2):272–80.
53. BissonnetteN, Levesque-SergerieJP, ThibaultCet al. Spermatozoal transcriptome profiling for bull sperm motility: a potential tool to evaluate semen quality. Reproduction. 2009;138(1):65–80.
54. PlattsAE, DixDJ, ChemesHEet al. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Human Mol Genet. 2007;16(7):763–73.
55. Garcia-HerreroS, GarridoN, Martinez-ConejeroJAet al. Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI. Reprod Biomed Online. 2011;22(1):25–36.
56. Garcia-HerreroS, MeseguerM, Martinez-ConejeroJAet al. The transcriptome of spermatozoa used in homologous intrauterine insemination varies considerably between samples that achieve pregnancy and those that do not. Fertil Steril. 2010;94(4):1360–73.
57. MontjeanD, De La GrangeP, GentienDet al. Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet. 2012;29(1):3–10.
58. LambardS, Galeraud-DenisI, MartinGet al. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004;10(7):535–41.
59. BoerkeA, DielemanSJ, GadellaBM. A possible role for sperm RNA in early embryo development. Theriogenology. 2007;68(Suppl. 1):S147–55.
60. BreitbartH. Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol. 2002;187(1–2):139–44.
61. GadellaBM, TsaiPS, BoerkeAet al. Sperm head membrane reorganisation during capacitation. Int J Dev Biol. 2008;52(5–6):473–80.
62. YanW, MorozumiK, ZhangJet al. Birth of mice after intracytoplasmic injection of single purified sperm nuclei and detection of messenger RNAs and microRNAs in the sperm nuclei. Biol Reprod. 2008;78(5):896–902.
63. WardWS, KishikawaH, AkutsuHet al. Further evidence that sperm nuclear proteins are necessary for embryogenesis. Zygote. 2000;8(1):51–6.
64. MoharI, SzczygielMA, YanagimachiRet al. Sperm nuclear halos can transform into normal chromosomes after injection into oocytes. Mol Reprod Dev. 2002;62(3):416–20.
65. TolstoshevP, WellsJR. Nature and origins of chromatin-associated ribonucleic acid of avian reticulocytes. Biochemistry. 1974;13(1):103–11.
66. RassoulzadeganM, GrandjeanV, GounonPet al. RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature. 2006;441(7092):469–74.
67. GrandjeanV, GounonP, WagnerNet al. The mir-124-sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development. 2009;136(21):3647–55.
68. KawaharaM, WuQ, TakahashiNet al. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol. 2007;25(9):1045–50.
69. MillerD, BrinkworthM, IlesD. The testis as a conduit for genomic plasticity: an advanced interdisciplinary workshop. Biochem Soc Trans. 2007;35(Pt 3):605–8.
70. BrosiusJ, TiedgeH. Reverse transcriptase: mediator of genomic plasticity. Virus Genes. 1995;11(2–3):163–79.
71. PeastonAE, KnowlesBB, HutchisonKW. Genome plasticity in the mouse oocyte and early embryo. Biochem Soc Trans. 2007;35(Pt 3):618–22.
72. PeastonAE, EvsikovAV, GraberJHet al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell. 2004;7(4):597–606.
73. KnerrI, BeinderE, RascherW. Syncytin, a novel human endogenous retroviral gene in human placenta: evidence for its dysregulation in preeclampsia and HELLP syndrome. Am J Obstet Gynecol. 2002;186(2):210–13.
74. GosdenCM, LiloglouT, NunnJet al. The knights of the round table hypothesis of tumour suppressor gene function – noble sacrifice or sexual dalliance: genes, including p53, BRCA1/2 and RB have evolved by horizontal and vertical transmission of mating factor genes and are involved in gametogenesis, implantation, development and tumourigenesis. Int J Oncol. 1998;12(1):5–35.
75. de BoerP, RamosL, de VriesMet al. Memoirs of an insult: sperm as a possible source of transgenerational epimutations and genetic instability. Mol Hum Reprod. 2009;16(1):48–56.
76. BranciforteD, MartinSL. Expression of line-1 RNA and protein in mouse testis. Mol Biol Cell. 1992;3(SS):A101.
77. KazazianHH Jr., WongC, YoussoufianHet al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature. 1988;332:164–6.
78. SciamannaI, VitulloP, CuratoloAet al. Retrotransposons, reverse transcriptase and the genesis of new genetic information. Gene. 2009;448(2):180–6.
79. AlloM, BuggianoV, FededaJPet al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol. 2009;16(7):717–24.
80. MetcalfeCJ, BulazelKV, FerreriGCet al. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics. 2007;177(4):2507–17.
81. BrownJD, PiccuilloV, O’NeillRJ. Retroelement demethylation associated with abnormal placentation in Mus musculus × Mus caroli hybrids. Biol Reprod. 2012;86(3):88.