Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T01:49:12.440Z Has data issue: false hasContentIssue false

11 - Monotonicity of value function for POMDPs

from Part III - Partially Observed Markov Decision Processes: Structural Results

Published online by Cambridge University Press:  05 April 2016

Vikram Krishnamurthy
Affiliation:
Cornell University/Cornell Tech
Get access

Summary

This chapter gives sufficient conditions on the POMDP model so that the value function in Bellman's dynamic programming equation is decreasing with respect to the monotone likelihood ratio (MLR) stochastic order. That is, π1 ≥;r π2 (in terms of MLR dominance) implies V(π1) ≤ V(π2). To prove this result, we will use the structural properties of the optimal filter established in Chapter 10.

Giving conditions for a POMDP to have a monotone value function is useful for several reasons: it serves as an essential step in establishing sufficient conditions for a stopping time POMDPs to have a monotone optimal policy – this is discussed in Chapter 12. For more general POMDPs (discussed in Chapter 14), it allows us to upper and lower bound the optimal policy by judiciously constructed myopic policies. Please see Figure 10.1 for the sequence of chapters on POMDP structural results.

After giving sufficient conditions for a monotone value function, this chapter also gives two examples of POMDPs to illustrate the usefulness of this result:

  1. Example 1: Monotone optimal policy for two-state POMDP: §11.3 gives sufficient conditions for a two-state POMDP to have a monotone optimal policy. The optimal policy is characterized by at most U − 1 threshold belief states (where U denotes the number of possible actions). One only needs to compute (estimate) these U − 1 threshold belief states in order to determine the optimal policy. This is considerably easier than solving Bellman's equation. Also real-time implementation of a controller with a monotone policy is simple; only the threshold belief states need to be stored in a lookup table. Figure 11.1 illustrates a monotone policy for a two-state POMDP with U = 3.

  2. Example 2: POMDP Multi-armed bandits and opportunistic scheduling: §11.4 discusses how monotone value functions can be used to solve POMDP multi-armed bandit problems efficiently. It is shown that for such problems, the optimal strategy is “opportunistic”: choose the bandit with the largest belief state in terms of MLR order.

Model and assumptions

Consider a discrete-time, infinite horizon discounted cost POMDP which was formulated in §7.6.

Type
Chapter
Information
Partially Observed Markov Decision Processes
From Filtering to Controlled Sensing
, pp. 241 - 254
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×