Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T21:25:18.587Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  20 May 2020

A. K. Nandakumaran
Affiliation:
Indian Institute of Science, Bangalore
P. S. Datti
Affiliation:
Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Partial Differential Equations
Classical Theory with a Modern Touch
, pp. 348 - 352
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, A. (1972). Handbook of Mathematical Functions, New York: Dover.Google Scholar
Apostol, T. M. (2002). Mathematical Analysis, 2nd ed., New Delhi: Narosa.Google Scholar
Apostol, T. M. (2011). Calculus, vols. 1 and 2. New Delhi: Wiley India.Google Scholar
Bardi, M. and Capuzzo Dolcetta, I. (1997). Optimal Control and Viscosity Solution of Hamilton–Jacobi–Bellman Equations, Boston: Birkhäuser.Google Scholar
Barták, J., Herrman, L., Lovicar, V. and Vejvoda, O. (1991). Partial Differential Equations of Evolution, New York: Ellis Horwood.Google Scholar
Benton, S. (1977). The Hamilton–Jacobi Equation: A Global Approach, New York: Academic Press.Google Scholar
Benzoni-Gavage, S. and Serre, D. (2007). Multidimensional Hyperbolic Partial Differential Equations, Oxford: Clarendon Press.Google Scholar
Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations, New York: Springer.Google Scholar
Burgers, J. M. (1974). The Nonlinear Diffusion Equation, Dordrecht-Holland: D. Reidel Publishing Company.Google Scholar
Caflisch, R. E. (1990). A simplified version of the abstract Cauchy–Kowalewski theorem with weak singularities. Bulletin of the American Mathematical Society, 23(2), 495500.CrossRefGoogle Scholar
Cole, J. D. (1951). On a quasi-linear parabolic equation occurring in aerodynamics. Quarterly of Applied Mathematics 9: 225236.Google Scholar
Copson, E. T. (1975). Partial Differential Equations, Cambridge: Cambridge University Press.Google Scholar
Courant, R. and Friedrichs, K. O. (1976). Supersonic Flow and Shock Waves, reprint ed., New York: Springer-Verlag.Google Scholar
Courant, R. and Hilbert, D. (1989). Methods of Mathematical Physics: Vol II Partial Differential Equations, New York: John Wiley and Sons.Google Scholar
Crandall, M. G., Evans, L. C. and Lions, P. L. (1984). Some properties of viscosity solutions of Hamilton–Jacobi equations. Transactions of the American Mathematical Society 281: 487502.Google Scholar
Crandall, M. G., Ishii, H. and Lions, P. L. (1992). Users guide to viscosity solutions of second order HJEs. Bulletin of the American Mathematical Society 27: 167.Google Scholar
Crandall, M. G. and Lions, P. L. (1981). Conditions d’unicite pour les solutions generalises des equations d’Hamilton–Jacobi du premier ordre. Comptes rendus de l’Académie des Sciences Paris Serie I: Mathematique 292: 487502.Google Scholar
Crandall, M. G. and Lions, P. L. (1983). Viscosity solutions of Hamilton–Jacobi equations. Transactions of the American Mathematical Society 292: 142.Google Scholar
Dafermos, C. M. (2009). Hyperbolic Conservation Laws in Continuum Physics, 2nd ed., New York: Springer.Google Scholar
DiBenedetto, E. (2010). Partial Differential Equations, 2nd ed., New Delhi: Springer International.Google Scholar
Evans, L. C. (1998). Partial Differential Equations, Rhode Island: AMS, Providence.Google Scholar
Folland, G. B. (1992). Fourier Analysis and Its Applications, Hyderabad: American Mathematical Society, University Press (India).Google Scholar
Folland, G. B. (1995). Introduction to Partial Differential Equations, 2nd ed., Princeton: Princeton University Press.Google Scholar
Forsyth, A. R. (1906). Theory of Differential Equations, Part IV, Partial Differential Equations, vol. VI. Cambridge: Cambridge University Press.Google Scholar
Friedland, S., Robbins, J. W. and Sylvester, J. H. (1984). On the crossing rule. Communications on Pure and Applied Mathematics 37: 1937.Google Scholar
Gilberg, D. and Trudinger, N. S. (2001). Elliptic Partial Differential Equations of Second Order, Berlin-Heidelberg: Springer.Google Scholar
Gilkey, P. B. (1984). Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Houston: Publish or Perish Inc.Google Scholar
Glimm, J. (1965). Solutions in the large for nonlinear hyperbolic systems of equations. Communications on Pure and Applied Mathematics 18: 697715.CrossRefGoogle Scholar
Goldstein, J. A. (1985). Semigroups of Linear Operators and Applications, Oxford: Oxford University Press.Google Scholar
Hadamard, J. (1902). Sur les problmes aux drives partielles et leur signification physique. Princeton University Bulletin 13: 4952.Google Scholar
Hopf, E. (1950). The partial differential equation ut + uux = μuxx. Communications on Pure and Applied Mathematics 3: 201230.Google Scholar
Hörmander, L. (1976). Linear Partial Differential Operators, Fourth Printing, New York: Springer-Verlag.Google Scholar
Hörmander, L. (1984). Linear Partial Differential Operators, vols. I and II. New York: Springer-Verlag.Google Scholar
Hörmander, L. (1988). Non-linear Hyperbolic Differential Equations, Lund: University of Lund and Lund Institute of Technology.Google Scholar
Hörmander, L. (1997). Lectures on Nonlinear Hyperbolic Differential Equations, Mathèmatiques and Applications, vol. 26. Heidelberg: Springer.Google Scholar
John, F. (1971). Partial Differential Equations, 1st ed., New York: Springer Verlag.Google Scholar
John, F. (1975). Partial Differential Equations, 2nd ed., New York: Springer Verlag.Google Scholar
John, F. (1978). Partial Differential Equations, 3rd ed., New York: Springer Verlag.Google Scholar
John, F. (1983). Lower bounds for the life span of solutions of nonlinear wave equations in three space dimensions. Communications on Pure and Applied Mathematics 36: 135.CrossRefGoogle Scholar
John, F. and Klainerman, S. (1983). Almost global existence to nonlinear wave equations in three space dimensions. Communications on Pure and Applied Mathematics 37: 443455.Google Scholar
Kesavan, S. (1989). Topics in Functional Analysis and Applications, New Delhi: Wiley Eastern.Google Scholar
Klainerman, S. (1980). Global existence for nonlinear wave equations. Communications on Pure and Applied Mathematics 33: 43101.Google Scholar
Klainerman, S. (1985). Uniform decay estimates and the Lorentz invariance of the classical wave equation. Communications on Pure and Applied Mathematics 38: 321332.Google Scholar
Klainerman, S. and Ponce, G. (1983). Global small amplitude solutions to nonlinear evolution equations. Communications on Pure and Applied Mathematics 36: 133141.Google Scholar
Koshlyakov, N. S., Smirnov, M. M. and Gliner, E. B. (1964). Differential Equations of Mathematical Physics, Amsterdam: North-Holland.Google Scholar
Kreiss, H. O. and Lorenz, J. (2004). Initial-Boundary Value Problems and the Navier–Stokes Equations, Philadelphia: SIAM.CrossRefGoogle Scholar
Ladyzhenskaya, O. A. (1985). Boundary Value Problems of Mathematical Physics, New York: Springer.Google Scholar
Ladyzhenskaya, O. A., Solonnikov, V. A. and Ural’ceva, N. N. (1968). Linear and Quasilinear Equations of Parabolic Type, Rhode Island: American Mathematical Society, Providence.Google Scholar
Lax, P. (1973). Hyperbolic Systems of Conservation Laws and Mathematical Theory of Shock Waves, Philadelphia: SIAM.Google Scholar
Lax, P. (1982). Multiplicity of eigenvalues. Bulletin of the American Mathematical Society, 6(2), 213214.Google Scholar
Lewy, H. (1957). An example of a smooth partial differential equation without solution. Annals of Mathematics 66: 155158.Google Scholar
Liberzon, D. (2012). Calculus of Variations and Optimal Control Theory: A Concise Introduction, Princeton: Princeton University Press.Google Scholar
Lighthill, M. J. and Whitham, G. B. (1955). On Kinematic Waves: I. Flood movement in long rivers; II. Theory of traffic flow on long crowded roads. Proceedings of the Royal Society London, A229, 281345.Google Scholar
Lions, P. L. (1982). Generalized Solutions of Hamilton–Jacobi Equations, London: Pitman.Google Scholar
Liu, T. (1977). The deterministic version of the Glimm scheme. Communications in Mathematical Physics 55: 163177.Google Scholar
Majda, A. (1985). Compressible fluid flow and systems of conservation laws in several space variables, New York: Springer-Verlag.Google Scholar
Markowitz, P. (2005). Partial Differential Equations, New York: Springer.Google Scholar
McOwen, R. C. (2005). Partial Differential Equations: Methods and Applications, 2nd ed., Delhi: Pearson Education.Google Scholar
Mikhailov, V. P. (1978). Partial Differential Equations, Moscow: Mir Publishers.Google Scholar
Mitrea, D. (2013). Distributions, Partial Differential Equations and Harmonic Analysis, New York: Springer.CrossRefGoogle Scholar
Morawetz, C. S. (1981). Lectures on Non-linear Waves and Shocks, TIFR Lecture Notes, New York: Springer-Verlag.Google Scholar
Munkres, J. R. (1991). Analysis on Manifolds, Redwood City: Addison-Wesley.Google Scholar
Murray, J. D. (2003). Mathematical Biology, 3rd ed., New York: Springer.Google Scholar
Nandakumaran, A. K., Datti, P. S. and George, R. K. (2017). Ordinary Differential Equations: Principles and Applications, Cambridge: Cambridge University Press.Google Scholar
Nirenberg, L. (1976). Lectures on Linear Partial Differential Equations, Regional Conference Series in Mathematics, vol. 17, second printing ed., American Mathematical Society, Providence.Google Scholar
Oleinik, O. A. (1959). Uniqueness and stability of the generalised solution of the Cauchy problem for a quasi-linear equation. Uspekhi Matematicheskikh Nauk 14: 16570.Google Scholar
Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations, New York: Springer-Verlag.Google Scholar
Peetre, J. (1960). Réctifications à l’article “Une caracterérisation abstraite des opéteurs différentials”. Mathematica Scandinavica 8: 116120.Google Scholar
Pinchover, Y. and Rubinstein, J. (2005). An Introduction to Partial Differential Equations, Cambridge: Cambridge University Press.Google Scholar
Prasad, P. and Ravindran, R. (1996). Partial Differential Equations, 3rd ed., New Delhi: New Age International.Google Scholar
Rauch, J. (1992). Partial Differential Equations, New Delhi: Narosa.Google Scholar
Renardy, M. and Rogers, R. C. (2004). Partial Differential Equations, New York: Springer.Google Scholar
Rhee, H.-K., Aris, R. and Amundson, N. R. (1986). First-Order Partial Differential Equations, vols. I and II. Mineola: Dover Publications.Google Scholar
Rubinstein, I. and Rubinstein, L. (1998). Partial Differential Equations in Classical Mathematical Physics, Cambridge: Cambridge University Press.Google Scholar
Rudin, W. (1976). Principles of Mathematical Analysis, London: McGraw-Hill.Google Scholar
Rund, H. (1973). The Hamilton–Jacobi Theory in the Calculus of Variations, Huntington, NY: Krieger.Google Scholar
Salsa, S. (2008). Partial Differential Equations in Action: From Modelling to Theory, Milano: Springer.Google Scholar
Schwartz, L. (1966). Théorie des Distributions, Paris: Hermann.Google Scholar
Simmons, G. F. (1991). Differential Equations with Applications and Historical Notes, New York: McGraw-Hill International.Google Scholar
Smoller, J. (1994). Shock Waves and Reaction–Diffusion Equations, 2nd ed., New York: Springer-Verlag.Google Scholar
Spivak, M. (1965). Calculus on Manifolds, Reading, MA: Addison-Wesley Publishing Company.Google Scholar
Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes, New York: Springer-Verlag.Google Scholar
Taylor, A. E. and Mann, W. R. (1983). Advanced Calculus, New York: John Wiley and Sons.Google Scholar
Trèves, F. (2006). Basic Linear Partial Differential Equations, New York: Dover.Google Scholar
Vladimirov, V. S. (1979). Generalized Functions of Mathematical Physics, Moscow: Mir Publishers.Google Scholar
Vladimirov, V. S. (1984). Equations of Mathematical Physics, Moscow: Mir Publishers.Google Scholar
von Wahl, W. (1971). Lp decay rates for homogeneous wave equations. Mathematische Zeitschrift 120: 93106.Google Scholar
Whitham, G. B. (1974). Linear and Non-linear Waves, New York: Wiley-Interscience.Google Scholar
Widder, D. V. (1961). Advanced Calculus, Delhi: PHI Learning.Google Scholar
Widder, D. V. (1975). The Heat Equation, New York: Academic Press.Google Scholar
Wilcox, C. H. (1962). Initial-boundary value problems for linear partial differential equations of the second order. Archive for Rational Mechanics and Analysis 10: 361400.Google Scholar
Yosida, K. (1974). Functional Analysis, 4th ed., New Delhi: Narosa Publishing House.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • A. K. Nandakumaran, Indian Institute of Science, Bangalore, P. S. Datti
  • Book: Partial Differential Equations
  • Online publication: 20 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108839808.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • A. K. Nandakumaran, Indian Institute of Science, Bangalore, P. S. Datti
  • Book: Partial Differential Equations
  • Online publication: 20 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108839808.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • A. K. Nandakumaran, Indian Institute of Science, Bangalore, P. S. Datti
  • Book: Partial Differential Equations
  • Online publication: 20 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108839808.014
Available formats
×