Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T14:56:54.456Z Has data issue: false hasContentIssue false

8 - Rings of functions on discs and annuli

Published online by Cambridge University Press:  05 August 2012

Kiran S. Kedlaya
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

In Part III we focus our attention specifically on p-adic ordinary differential equations (although most of our results apply also to complete nonarchimedean fields of residual characteristic 0). To do this with maximal generality, one would need first to introduce a category of geometric spaces over which to work. This would require a fair bit of discussion of either rigid analytic geometry, in the manner of Tate, or nonarchimedean analytic geometry in the manner of Berkovich, neither of which we want either to assume or introduce. Fortunately, since we only need to consider one-dimensional spaces, we can manage by working completely algebraically and considering differential modules over appropriate rings.

In this chapter, we introduce those rings and collect their basic algebraic properties. This includes the fact that they carry Newton polygons analogous to those for polynomials. Another key fact is that there is a form of the approximation lemma (Lemma 1.3.7) valid over some of these rings.

Notation 8.0.1. Throughout this part, let K be a field of characteristic 0 that is complete for a nontrivial nonarchimedean norm | · |. (The assumption of characteristic 0 is not used in this chapter; it will become crucial when we start discussing differential modules again.) Let p denote the characteristic of the residue field kK. We do not assume p > 0 (as the case p = 0 may be useful for some applications), but when p > 0 we do require the norm to be normalized in such a way that |p| = p−1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×