Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T10:12:39.127Z Has data issue: false hasContentIssue false

Chapter 15 - Prevention of Ovarian Hyperstimulation Syndrome

from Section 3 - Difficulties and Complications of Ovarian Stimulation and Implantation

Published online by Cambridge University Press:  14 April 2022

Mohamed Aboulghar
Affiliation:
University of Cairo IVF Centre
Botros Rizk
Affiliation:
University of South Alabama
Get access

Summary

Ovarian hyperstimulation syndrome (OHSS) is the most serious iatrogenic complication of excessive response to ovulation induction or ovarian stimulation during in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment cycles [1–5] The incidence of OHSS has been estimated at 20–33% for mild cases, 3–6% for moderate cases, and 0.1% and 2% for severe cases [6–8]. OHSS is characterized by bilateral, multiple follicular and theca-lutein ovarian cysts (Figure 15.1) and an acute shift in body fluid distribution resulting in ascites (Figure 15.2) and pleural effusion. Rizk and Smitz [9], in an analytical study of the factors that influence the incidence of OHSS, found a wide variation among different centers.

Type
Chapter
Information
Ovarian Stimulation , pp. 141 - 157
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, HI, Ah-Moye, M, Brinsden, P, et al. The effect of the dose of human chorionic gonadotropin and the type of gonadotropin stimulation on oocyte recovery rates in an in vitro fertilization program. Fertil Steril 1987;48(6):958963.Google Scholar
Aboulghar, MA, Mansour, RT. Ovarian hyperstimulation syndrome: classifications and critical analysis of preventive measures. Hum Reprod Update 2003;9:275289.CrossRefGoogle ScholarPubMed
Al-Inany, HG, Youssef, MA, Ayeleke, RO, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev 2016;4:CD001750.Google Scholar
Alvarez, C, Martí-Bonmatí, L, Novella-Maestre, E, et al. Dopamine agonist cabergoline reduces hemoconcentration and ascites in hyperstimulated women undergoing assisted reproduction. J Clin Endocrinol Metab 2007;92(8):29312937.Google Scholar
Anaya, Y, Mata, DA, Letourneau, J, et al. A novel oocyte maturation trigger using 1500 IU of human chorionic gonadotropin plus 450 IU of follicle-stimulating hormone may decrease ovarian hyperstimulation syndrome across all in vitro fertilization stimulation protocols [published correction appears in J Assist Reprod Genet 2017;35(2):309]. J Assist Reprod Genet 2018;35(2):297307.Google Scholar
Serour, GI, Aboulghar, MA, Mansour, R, et al. Complications of medically assisted conception in 3,500 cycles. Fertil Steril 1998;70:638642.Google Scholar
Mathur, RS, Akande, AV, Keay, SD, et al. Distinction between early and late ovarian hyperstimulation syndrome. Fertil Steril 2000;73:901907.Google Scholar
Papanikolaou, EG, Pozzobon, C, Kolibianakis, EM, et al. Incidence and prediction of ovarian hyperstimulation syndrome in women undergoing gonadotropin-releasing hormone antagonist in vitro fertilization cycles. Fertil Steril 2006;85:112120.Google Scholar
Rizk, B, Smitz, J. Ovarian hyperstimulation syndrome after superovulation for IVF and related procedures. Hum Reprod 1992;7:320327.Google Scholar
Rizk, B. Ovarian hyperstimulation syndrome. In: Studd, J, ed. Progress in Obstetrics and Gynecology, Vol. 11. Edinburgh: Churchill Livingstone; 1993:311349.Google Scholar
Rizk, B, Aboulghar, MA. Classification, pathophysiology and management of ovarian hyperstimulation syndrome. In: Brinsden, P, ed. A Textbook of In-vitro Fertilization and Assisted Reproduction, 2nd ed. Carnforth-Lancs, UK: The Parthenon Publishing Group; 1999:131155.Google Scholar
Golan, A, Weissman, A. Symposium: update on prediction and management of OHSS. A modern classification of OHSS. Reprod Biomed Online 2009;19(1):2832. doi: 10.1016/s1472-6483(10)60042-9.CrossRefGoogle ScholarPubMed
Humaidan, P, Quartarolo, J, Papanikolaou, EG. Preventing ovarian hyperstimulation syndrome: guidance for the clinician. Fertil Steril 2010;94(2):389400.Google Scholar
Ferrero, H, García-Pascual, CM, Gómez, R, et al. Dopamine receptor 2 activation inhibits ovarian vascular endothelial growth factor secretion in vitro: implications for treatment of ovarian hyperstimulation syndrome with dopamine receptor 2 agonists. Fertil Steril 2014;101(5):14111418.Google Scholar
Nastri, CO, Ferriani, RA, Rocha, IA, Martins, WP. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet 2010;27:121128.Google Scholar
Geva, E, Jaffe, RB. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil Steril 2000;74(3):429438. doi: 10.1016/s0015-0282(00)00670-1.CrossRefGoogle ScholarPubMed
Naredi, N, Talwar, P, Sandeep, K. VEGF antagonist for the prevention of ovarian hyperstimulation syndrome: current status. Med J Armed Forces India 2014;70(1):5863. doi: 10.1016/j.mjafi.2012.03.005.Google Scholar
Kaiser, UB. The pathogenesis of the ovarian hyperstimulation syndrome. N Engl J Med 2003;349:729732.CrossRefGoogle ScholarPubMed
Aboulghar, MA, Mansour, RT, Serour, GI, El Helw, BA, Shaarawy, M. Elevated levels of interleukin-2, soluble interleukin-2 receptor alpha, interleukin-6, soluble interleukin-6 receptor and vascular endothelial growth factor in serum and ascitic fluid of patients with severe ovarian hyperstimulation syndrome. Eur J Obstet Gynecol Reprod Biol 1999;87(1):8185. doi: 10.1016/s0301-2115(99)00082-2.Google Scholar
Luke, B, Brown, MB, Morbeck, DE, et al. Factors associated with ovarian hyperstimulation syndrome (OHSS) and its effect on assisted reproductive technology (ART) treatment and outcome. Fertil Steril 2010;94(4):13991404. doi: 10.1016/j.fertnstert.2009.05.092.Google Scholar
Tarlatzi, TB, Venetis, CA, Devreker, F, Englert, Y, Delbaere, A. What is the best predictor of severe ovarian hyperstimulation syndrome in IVF? A cohort study. J Assist Reprod Genet 2017;34(10):13411351.Google Scholar
Iliodromiti, S, Anderson, RA, Nelson, SM. Technical and performance characteristics of anti-Müllerian hormone and antral follicle count as biomarkers of ovarian response. Hum Reprod Update 2015;21(6):698710.Google Scholar
Lee, TH, Liu, CH, Huang, CC, et al. Serum anti-mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod 2008;23:160167.CrossRefGoogle ScholarPubMed
Kwan, I, Bhattacharya, S, McNeil, A, van Rumste, MM. Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI). Cochrane Database Syst Rev 2008;2:CD005289. doi: 10.1002/14651858.CD005289.pub2.Google Scholar
Kwan, I, Bhattacharya, S, Kang, A, Woolner, A. Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI). Cochrane Database Syst Rev 2014;2014(8):CD005289.Google Scholar
Nelson, SM. Prevention and management of ovarian hyperstimulation syndrome. Thromb Res 2017;151 Suppl 1:S61S64.Google Scholar
Papanikolaou, EG, Humaidan, P, Polyzos, NP, Tarlatzis, B. Identification of the high-risk patient for ovarian hyperstimulation syndrome. Semin Reprod Med 2010;28(6):458462.Google Scholar
Heijnen, EM, Eijkemans, MJ, De Klerk, C, et al. A mild treatment strategy for in-vitro fertilisation: a randomised non-inferiority trial. Lancet 2007;369(9563):743749.Google Scholar
Karimzadeh, MA, Ahmadi, S, Oskouian, H, Rahmani, E. Comparison of mild stimulation and conventional stimulation in ART outcome. Arch Gynecol Obstet 2010;281(4):741746.Google Scholar
Casano, S, Guidetti, D, Patriarca, A, et al. MILD ovarian stimulation with GnRH-antagonist vs. long protocol with low dose FSH for non-PCO high responders undergoing IVF: a prospective, randomized study including thawing cycles. J Assist Reprod Genet 2012;29(12):13431351.Google Scholar
Rinaldi, L, Lisi, F, Selman, H. Mild/minimal stimulation protocol for ovarian stimulation of patients at high risk of developing ovarian hyperstimulation syndrome. J Endocrinol Invest 2014;37(1):6570.Google Scholar
Onofriescu, A, Bors, A, Luca, A, et al. GnRH antagonist IVF protocol in PCOS. Curr Health Sci J 2013;39(1):2025.Google Scholar
Ozmen, B, Sükür, YE, Seval, MM, et al. Dual suppression with oral contraceptive pills in GnRH antagonist cycles for patients with polycystic ovary syndrome undergoing intracytoplasmic sperm injection. Eur J Obstet Gynecol Reprod Biol 2014;183:137140.Google Scholar
Xing, W, Lin, H, Li, Y, et al. Is the GnRH antagonist protocol effective at preventing OHSS for potentially high responders undergoing IVF/ICSI? PLoS One 2015; 10(10):e0140286.CrossRefGoogle ScholarPubMed
Yu, R, Lin, J, Zhao, JZ, et al. Study on clinical effect on infertility women with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization-embryo transfer. Zhonghua Fu Chan Ke Za Zhi 2012;47(4):250254.Google Scholar
Das, M, Son, WY, Buckett, W, Tulandi, T, Holzer, H. In-vitro maturation versus IVF with GnRH antagonist for women with polycystic ovary syndrome: treatment outcome and rates of ovarian hyperstimulation syndrome. Reprod Biomed Online 2014;29(5):545551.Google Scholar
Walls, ML, Hunter, T, Ryan, JP, et al. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum Reprod 2015;30(1):8896.Google Scholar
Rizk, B, Aboulghar, M. Modern management of ovarian hyperstimulation syndrome. Hum Reprod 1991;6(8):10821087.CrossRefGoogle ScholarPubMed
Sher, G, Zouves, C, Feinman, M, Maassarani, G.Prolonged coasting’: an effective method for preventing severe ovarian hyperstimulation syndrome in patients undergoing in-vitro fertilization. Hum Reprod 1995;10(12):31073109.Google Scholar
Kovács, P, Mátyás, S, Kaali, SG. Effect of coasting on cycle outcome during in vitro fertilization/intracytoplasmic sperm injection cycles in hyper-responders. Fertil Steril 2006;85(4):913917.Google Scholar
D’Angelo, A, Brown, J, Amso, NN. Coasting (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2011;6:CD002811.Google Scholar
Kosmas, IP, Zikopoulos, K, Georgiou, I, et al. Low-dose HCG may improve pregnancy rates and lower OHSS in antagonist cycles: a meta-analysis. Reprod Biomed Online 2009; 19(5):619630.Google Scholar
Tiboni, GM, Colangelo, EC, Ponzano, A. Reducing the trigger dose of recombinant hCG in high-responder patients attending an assisted reproductive technology program: an observational study. Drug Des Devel Ther 2016;10:16911694.Google Scholar
Gülekli, B, Göde, F, Sertkaya, Z, Işık, AZ. Gonadotropin-releasing hormone agonist triggering is effective, even at a low dose, for final oocyte maturation in ART cycles: case series. J Turk Ger Gynecol Assoc 2015;16(1):3540.Google Scholar
Casper, RF. Introduction: gonadotropin-releasing hormone agonist triggering of final follicular maturation for in vitro fertilization. Fertil Steril 2015;103(4):865866.CrossRefGoogle ScholarPubMed
Youssef, MA, Van der Veen, F, Al-Inany, HG, et al. Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist-assisted reproductive technology. Cochrane Database Syst Rev 2014;10:CD008046.Google Scholar
Youssef, MA, van Wely, M, Hassan, MA, et al. Can dopamine agonists reduce the incidence and severity of OHSS in IVF/ICSI treatment cycles? A systematic review and meta-analysis. Hum Reprod Update 2010;16(5):459466.Google Scholar
Baumgarten, M, Polanski, L, Campbell, B, Raine-Fenning, N. Do dopamine agonists prevent or reduce the severity of ovarian hyperstimulation syndrome in women undergoing assisted reproduction? A systematic review and meta-analysis. Hum Fertil 2013;16(3):168174.Google Scholar
Kasum, M, Vrčić, H, Stanić, P, et al. Dopamine agonists in prevention of ovarian hyperstimulation syndrome. Gynecol Endocrinol 2014;30(12):845849.CrossRefGoogle ScholarPubMed
Leitao, VM, Moroni, RM, Seko, LM, Nastri, CO, Martins, WP. Cabergoline for the prevention of ovarian hyperstimulation syndrome: systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2014;101(3):664675.Google Scholar
Gokmen, O, Ugur, M, Ekin, M, et al. Intravenous albumin versus hydroxyethyl starch for the prevention of ovarian hyperstimulation in an in vitro fertilization programme: a prospective randomized placebo controlled study. Eur J Obstet Gynecol Reprod Biol 2001;96(2):187192.Google Scholar
Youssef, MA, Mourad, S. Volume expanders for the prevention of ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2016;8:CD001302.Google Scholar
Naredi, N, Karunakaran, S. Calcium gluconate infusion is as effective as the vascular endothelial growth factor antagonist cabergoline for the prevention of ovarian hyperstimulation syndrome. J Hum Reprod Sci 2013;6(4):248252. doi: 10.4103/0974-1208.126293.Google Scholar
Boothroyd, C, Karia, S, Andreadis, N, et al.; Australasian CREI Consensus Expert Panel on Trial evidence (ACCEPT) group. Consensus statement on prevention and detection of ovarian hyperstimulation syndrome. Aust N Z J Obstet Gynaecol 2015;55(6):523534.Google Scholar
Borges, E Jr., Braga, DP, Setti, AS, et al. Strategies for the management of OHSS: results from freezing-all cycles. JBRA Assist Reprod 2016;20(1):812.Google Scholar
He, Q, Xu, J, Cui, S, Li, H, Zhang, C. Relationship between letrozole administration during the luteal phase after oocyte retrieval and the early-stage ovarian hyperstimulation syndrome occurrence.Zhonghua Fu Chan Ke Za Zhi 2014;49(12):909913.Google Scholar
Wang, YQ, Luo, J, Xu, WM, et al. Can steroidal ovarian suppression during the luteal phase after oocyte retrieval reduce the risk of severe OHSS? J Ovarian Res 2015;8:63.Google Scholar
Cheng, ZX, Kong, G, Zhang, CL, Zhao, YN. Letrozole versus gonadotropin-releasing hormone antagonist during luteal phase in the prevention of ovarian hyperstimulation syndrome: a randomized controlled trial. Zhonghua Fu Chan Ke Za Zhi 2020;55(1):914.Google Scholar
Kol, S, Homburg, R, Alsbjerg, B, Humaidan, P. The gonadotropin-releasing hormone antagonist protocol–the protocol of choice for the polycystic ovary syndrome patient undergoing controlled ovarian stimulation. Acta Obstet Gynecol Scand 2012;91(6):643647.Google Scholar
Toftager, M, Bogstad, J, Bryndorf, T, et al. Risk of severe ovarian hyperstimulation syndrome in GnRH antagonist versus GnRH agonist protocol: RCT including 1050 first IVF/ICSI cycles. Hum Reprod 2016;31(6):12531264.Google Scholar
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type Hum Reprod Update 2017;23(5):560579.Google Scholar
Verberg, MF, Macklon, NS, Nargund, G, et al. Mild ovarian stimulation for IVF. Hum Reprod Update 2009;15(1):1329.Google Scholar
Zegers-Hochschild, F, Adamson, GD, de Mouzon, J, et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod 2009;24(11):26832687.CrossRefGoogle ScholarPubMed
Baart, EB, Martini, E, Eijkemans, MJ, et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod 2007;22(4):980988.Google Scholar
Nargund, G, Datta, AK, Fauser, B. Mild stimulation for in vitro fertilization. Fertil Steril 2017;108:558567.Google Scholar
Roque, M, Haahr, T, Geber, S, Esteves, SC, Humaidan, P. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update 2019;25(1):214.Google Scholar
Yang, ZY, Chian, RC. Development of in vitro maturation techniques for clinical applications. Fertil Steril 2017;108(4):577584.Google Scholar
Siristatidis, CS, Maheshwari, A, Vaidakis, D, Bhattacharya, S. In vitro maturation in subfertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database Syst Rev 2018;11(11):CD006606.Google Scholar
D’Angelo, A, Amso, NN, Hassan, R. Coasting (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2017;5:CD002811. doi: 10.1002/14651858.CD002811.pub4.Google Scholar
Humaidan, P, Bredkjær, HE, Bungum, L, et al. GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Huan Reprod 2005;20(5):12131220.Google Scholar
Pirard, C, Donnez, J, Loumaye, E. GnRH agonist as luteal phase support in assisted reproduction technique cycles: results of a pilot study. Hum Reprod 2006;21(7):18941900.Google Scholar
Kol, S. Luteolysis induced by a gonadotropin-releasing hormone agonist is the key to prevention of ovarian hyperstimulation syndrome. Fertil Steril 2004;81(1):15.Google Scholar
Simon, C, Cano, F, Valbuena, D, Remohi, J, Pellicer, A. Clinical evidence for a detrimental effect on uterine receptivity of high serum estradiol concentrations in high and normal responders. Hum Reprod 1995;10:24322437.Google Scholar
Haahr, T, Roque, M, Esteves, SC, Humaidan, P. GnRH agonist trigger and LH activity luteal phase support versus hCG trigger and conventional luteal phase support in fresh embryo transfer IVF/ICSI cycles-a systematic PRISMA review and meta-analysis. Front Endocrinol (Lausanne) 2017;8:116.Google Scholar
Castillo, JC, Haahr, T, Martínez-Moya, M, Humaidan, P. Gonadotropin-releasing hormone agonist for ovulation trigger – OHSS prevention and use of modified luteal phase support for fresh embryo transfer. Ups J Med Sci 2020;125(2):131137.Google Scholar
Martínez, F, Mancini, F, Solé, M, et al. Antagonist rescue of agonist IVF cycle at risk of OHSS: a case series. Gynecol Endocrinol 2014;30:145148.Google Scholar
Tso, LO, Costello, MF, Albuquerque, LE, Andriolo, RB, Macedo, CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2014;11:CD006105.Google Scholar
Mourad, S, Brown, J, Farquhar, C. Interventions for the prevention of OHSS in ART cycles: an overview of Cochrane reviews. Cochrane Database Syst Rev 2017;1: CD012103. doi: 10.1002/14651858.CD012103.pub2.Google Scholar
Jacob, SL, Brewer, C, Tang, T, et al. A short course of metformin does not reduce OHSS in a GnRH antagonist cycle for women with PCOS undergoing IVF: a randomised placebo-controlled trial. Hum Reprod 2016;31(12):27562764.Google Scholar
Eftekhar, M, Deghani Firoozabadi, R, Khani, P, Ziaei Bideh, E, Forghani, H. Effect of laparoscopic ovarian drilling on outcomes of in vitro fertilization in clomiphene-resistant women with polycystic ovary syndrome. Int J Fertil Steril 2016;10(1):4247. doi: 10.22074/ijfs.2016.4767.Google Scholar
Seyam, E, Hefzy, E. Laparoscopic ovarian drilling versus GnRH antagonist combined with cabergoline as a prophylaxis against the re-development of ovarian hyperstimulation syndrome. Gynecol Endocrinol 2018;34(7):616622. doi: 10.1080/09513590.2018.1425989.Google Scholar
Ramzy, A, Al-Inany, H, Aboulfoutouh, I. Ultrasonographic guided ovarian stroma hydrocoagulation for ovarian stimulation in polycystic ovary syndrome. Acta Obstet Gynecol Scand 2001;80:10461050.Google Scholar
McNatty, KP, Smith, DM, Makris, A, et al. The intraovarian sites of androgen and estrogen formation in women with normal and hyperandrogenic ovaries as judged by in vitro experiments. J Clin Endocrinol Metab 1980;50(4):755763.Google Scholar
Badawy, A, Khiary, M, Ragab, A, Hassan, M, Sherief, L. Ultrasound-guided transvaginal ovarian needle drilling (UTND) for treatment of polycystic ovary syndrome: a randomized controlled trial. Fertil Steril 2009;91(4):11641167.Google Scholar
Zhang, J, Tang, L, Kong, L, et al. Ultrasound-guided transvaginal ovarian needle drilling for clomiphene-resistant polycystic ovarian syndrome in subfertile women [published online ahead of print, 2019 Jul 31]. Cochrane Database Syst Rev 2019;7(7):CD008583.Google Scholar
Nargund, G, Hutchison, L, Scaramuzzi, R, Campbell, S. Low-dose HCG is useful in preventing OHSS in high-risk women without adversely affecting the outcome of IVF cycles. Reprod Biomed Online 2007;14(6):682685. doi: 10.1016/s1472-6483(10)60668-2.Google Scholar
Chen, X, Chen, S, He, Y, et al. Minimum dose of hCG to trigger final oocyte maturation and prevent OHSS in a long GnRHa protocol. J Huazhong Univ Sci Technol 2013;33:133136.Google Scholar
Tsoumpou, I, Muglu, J, Gelbaya, TA, Nardo, LG. Symposium: update on prediction and management of OHSS. Optimal dose of HCG for final oocyte maturation in IVF cycles: absence of evidence? Reprod Biomed Online 2009;19(1):5258.Google Scholar
Tapanainen, JS, Lapolt, PS, Perlas, E, Hsueh, AJ. Induction of ovarian follicle luteinization by recombinant follicle-stimulating hormone. Endocrinology 1993;133(6):28752880.Google Scholar
Zelinski-Wooten, MB, Hutchison, JS, Hess, DL, WoIf, DP, Stouffer, RL. A bolus of recombinant human follicle stimulating hormone at midcycle induces periovulatory events following multiple follicular development in macaques. Hum Reprod 1998;13(3):554560.Google Scholar
Busso, CE, Garcia-Velasco, JA, Simon, C, Pellicer, A. Prevention of OHSS: current strategies and new insights. Middle East Fertil Soc J 2010;15(4):223230.Google Scholar
Knoepfelmacher, M, Danilovic, DL, Rosa Nasser, RH, Mendonca, BB. Effectiveness of treating ovarian hyperstimulation syndrome with cabergoline in two patients with gonadotropin‐producing pituitary adenomas. Fertil Steril 2006;86(3):719.e15–719.e18.Google Scholar
Tang, H, Mourad, S, Zhai, SD, Hart, RJ. Dopamine agonists for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2016;11:CD008605. doi: 10.1002/14651858.CD008605.pub3.Google Scholar
Kissler, S, Neidhardt, B, Siebzehnrübl, E, et al. The detrimental role of colloidal volume substitutes in severe ovarian hyperstimulation syndrome: a case report. Eur J Obstet Gynecol Reprod Biol 2001;99(1):131134.Google Scholar
Morris, RS, Wong, IL, Kirkman, E, Gentschein, E, Paulson, RJ. Inhibition of ovarian-derived prorenin to angiotensin cascade in the treatmentof ovarian hyperstimulation syndrome. Hum Reprod 1995;10:13551358.Google Scholar
Gurgan, T, Demirol, A, Guven, S, et al. Intravenous calcium infusion as a novel preventive therapy of ovarian hyperstimulation syndrome for patients with polycystic ovarian syndrome. Fertil Steril 2011;96(1):5357.Google Scholar
El-Khayat, W, Elsadek, M. Calcium infusion for the prevention of ovarian hyperstimulation syndrome: a double-blind randomized controlled trial. Fertil Steril 2015;103(1):101105. doi: 10.1016/j.fertnstert.2014.09.046.Google Scholar
Naredi, N, Singh, SK, Lele, P, Nagraj, N. Severe ovarian hyperstimulation syndrome: can we eliminate it through a multipronged approach? Med J Armed Forces India 2018;74(1):4450. doi: 10.1016/j.mjafi.2017.04.006.Google Scholar
Davenport, MJ, Vollenhoven, B, Talmor, AJ. Gonadotropin-releasing hormone-agonist triggering and a freeze-all approach: the final step in eliminating ovarian hyperstimulation syndrome? Obstet Gynecol Surv 2017;72(5):296308.Google Scholar
Atkinson, P, Koch, J, Ledger, WL. GnRH agonist trigger and a freeze-all strategy to prevent ovarian hyperstimulation syndrome: a retrospective study of OHSS risk and pregnancy rates. Aust N Z J Obstet Gynaecol 2014;54(6):581585.Google Scholar
Shin, JJ, Jeong, Y, Nho, E, Jee, BC. Clinical outcomes of frozen embryo transfer cycles after freeze-all policy to prevent ovarian hyperstimulation syndrome. Obstet Gynecol Sci 2018;61(4):497504.Google Scholar
D’Angelo, A, Amso, NN. Embryo freezing for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2007;3:CD002806. doi: 10.1002/14651858.CD002806.pub2.Google Scholar
Chen, ZJ, Shi, Y, Sun, Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med 2016;375(6):523533.Google Scholar
Chen, Y, Yang, T, Hao, C, Zhao, J. A retrospective study of letrozole treatment prior to human chorionic gonadotropin in women with polycystic ovary syndrome undergoing in vitro fertilization at risk of ovarian hyperstimulation syndrome. Med Sci Monit 2018;24:42484253.Google Scholar
Tshzmachyan, R, Hambartsoumian, E. The role of letrozole (LE) in controlled ovarian stimulation (COS) in patients at high risk to develop ovarian hyper stimulation syndrome (OHSS). A prospective randomized controlled pilot study.J Gynecol Obstet Hum Reprod 2020;49(2):101643. doi: 10.1016/j.jogoh.2019.101643.Google Scholar
Mai, Q, Hu, X, Yang, G, et al. Effect of letrozole on moderate and severe early-onset ovarian hyperstimulation syndrome in high-risk women: a prospective randomized trial. Am J Obstet Gynecol 2017;216(1):42.e1–42.e10.Google Scholar
Zeng, C, Shang, J, Jin, AM, et al. The effect of luteal GnRH antagonist on moderate and severe early ovarian hyperstimulation syndrome during in vitro fertilization treatment: a prospective cohort study. Arch Gynecol Obstet 2019;300(1):223233.Google Scholar
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Pregnancy and neonatal outcomes following luteal GnRH antagonist administration in patients with severe early OHSS. Hum Reprod 2013;28(7):19291942. doi: 10.1093/humrep/det114.Google Scholar
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Serum vascular endothelial growth factor levels following luteal gonadotrophin-releasing hormone antagonist administration in women with severe early ovarian hyperstimulation syndrome. BJOG 2014;121(7):848855.Google Scholar
Rizk, B, Rizk, CB, Nawar, MG, Garcia-Velasco, JA, Sallam, HN. Ultrasonography in the prediction and management of ovarian hyperstimulation syndrome In: Rizk, B, ed. Ultrasonography in Reproductive Medicine and Infertility. Cambridge, UK : Cambridge University Press; 2010:299312.Google Scholar
Salmassi, A, Mettler, L, Hedderich, J, et al. Cut-off levels of anti-Mullerian hormone for the prediction of ovarian response, in vitro fertilization outcome and ovarian hyperstimulation syndrome. Int J Fertil Steril 2015;9(2):157167.Google Scholar
Vembu, R, Reddy, NS. Serum AMH level to predict the hyper response in women with PCOS and non-PCOS undergoing controlled ovarian stimulation in ART. J Hum Reprod Sci 2017;10(2):9194. doi: 10.4103/jhrs.JHRS_15_16.Google Scholar
Steward, RG, Lan, L, Shah, AA, et al. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: an analysis of 256,381 in vitro fertilization cycles. Fertil Steril 2014;101(4):967973.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×