Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T01:07:35.277Z Has data issue: false hasContentIssue false

Section 3 - Difficulties and Complications of Ovarian Stimulation and Implantation

Published online by Cambridge University Press:  14 April 2022

Mohamed Aboulghar
Affiliation:
University of Cairo IVF Centre
Botros Rizk
Affiliation:
University of South Alabama
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Ovarian Stimulation , pp. 109 - 188
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Keay, SD, Liversedge, NH, Mathur, RS, Jenkins, JM. Assisted conception following poor ovarian response to gonadotrophin stimulation. Br J Obstet Gynaecol 1997;104(5):521527.CrossRefGoogle ScholarPubMed
Polyzos, NP, Nwoye, M, Corona, R, et al. Live birth rates in Bologna poor responders treated with ovarian stimulation for IVF/ICSI. Reprod Biomed Online 2014;28(4):469474.Google Scholar
Ferraretti, AP, La Marca, A, Fauser, BCJM, et al.; ESHRE working group on Poor Ovarian Response Definition. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria Hum Reprod 2011;26(7):16161624. https://doi.org/10.1093/humrep/der092.Google Scholar
Younis, JS. The Bologna criteria for poor ovarian response; has the job been accomplished? Hum Reprod 2012;27(6): 18741875. https://doi.org/10.1093/humrep/des118.Google Scholar
Frydman, R. Poor responders: still a problem Fertil Steril 2011;96(5):1057. https://doi.org/10.1016/j.fertnstert.2011.09.051.Google Scholar
Humaidan, P, Alviggi, C, Fischer, R, Esteves, SC. The novel POSEIDON stratification of ‘Low prognosis patients in Assisted Reproductive Technology’ and its proposed marker of successful outcome. F1000Res 2016;5:2911. doi:10.12688/f1000research.10382.1.Google Scholar
Younis, JS. Ovarian aging and implications for fertility female health. Minerva Endocrinol 2012;37(1):4157.Google Scholar
De Ziegler, D, Borghese, B, Chapron, C. Endometriosis and infertility: pathophysiology and management. Lancet 2010;376(9742):730738. doi: 10.1016/S0140-6736(10)60490-4.Google Scholar
Coccia, ME, Rizzello, F, Mariani, G, et al. Ovarian surgery for bilateral endometriomas influences age at menopause. Hum Reprod 2011;26(11):30003007. https://doi.org/10.1093/humrep/der286.Google Scholar
Wouter, JK, Hehenkamp, NA, Volkers, FJM, et al. Loss of ovarian reserve after uterine artery embolization: a randomized comparison with hysterectomy. Hum Reprod 2007;22(7):19962005. https://doi.org/10.1093/humrep/dem105.Google Scholar
Almog, B, Shehata, F, Sheizaf, B, Tan, SL, Tulandi, T. Effects of ovarian endometrioma on the number of oocytes retrieved for in vitro fertilization. Fertil Steril 2011;95(2):525527.Google Scholar
Soto, N, Iñiguez, G, López, P, et al. Anti-Müllerian hormone and inhibin B levels as markers of premature ovarian aging and transition to menopause in type 1 diabetes mellitus Hum Reprod 2009;24(11):28382844. https://doi.org/10.1093/humrep/dep276.CrossRefGoogle ScholarPubMed
Chang, H, Chen, M, Lu, M, et al. Iron overload is associated with low anti‐müllerian hormone in women with transfusion‐dependent β‐thalassaemia. BJOG 2011;118: 825831. doi:10.1111/j.1471-0528.2011.02927.x.Google Scholar
De Vos, M, Devroey, P, Fauser, BC. Primary ovarian insufficiency. Lancet 2010;376(9744):911921.Google Scholar
Fritz, MA, Speroff, L. Clinical Gynecologic Endocrinology and Infertility, 8th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011.Google Scholar
Persani, L, Rossetti, R, Cacciatore, C. Genes involved in human premature ovarian failure. J Mol Endocrinol 2010;45(5):257279. https://jme.bioscientifica.com/view/journals/jme/45/5/257.xml.Google Scholar
Broer, SL, Dólleman, M, van Disseldorp, J, et al.; IPD-EXPORT Study Group. Prediction of an excessive response in in vitro fertilization from patient characteristics and ovarian reserve tests and comparison in subgroups: an individual patient data meta-analysis. Fertil Steril 2013;100(2):420.e7–429.e7.Google Scholar
La Marca, A, Sunkara, SK. Individualization of controlled ovarian stimulation in IVF using ovarian reserve markers: from theory to practice. Hum Reprod Update 2014;20(1):124140. https://doi.org/10.1093/humupd/dmt037.Google Scholar
Surrey, S, Schoolcraft, WB. Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques. Fertil Steril 2000;73(4):667676.Google Scholar
Al-Inany, H, Aboulghar, M. GnRH antagonist in assisted reproduction: a Cochrane review. Hum Reprod 2002;17(4):874885. https://doi.org/10.1093/humrep/17.4.874.CrossRefGoogle ScholarPubMed
Land, JA, Yarmolinskaya, MI, Dumoulin, JC, Evers, JL. High-dose human menopausal gonadotropin stimulation in poor responders does not improve in vitro fertilization outcome. Fertil Steril 1996;65(5):961965.Google Scholar
Tarlatzis, BC, Zepiridis, L, Grimbizis, G, Bontis, J. Clinical management of low ovarian response to stimulation for IVF: a systematic review. Hum Reprod Update 2003;9(1):6176.Google Scholar
Pandian, Z, McTavish, AR, Aucott, L, Hamilton, MPR, Bhattacharya, S. Interventions for ‘poor responders’ to controlled ovarian hyper stimulation (COH) in in‐vitro fertilisation (IVF). Cochrane Database Syst Rev 2010;1:CD004379. doi: 10.1002/14651858.CD004379.pub3.Google Scholar
Pu, D, Wu, J, Liu, J. Comparisons of GnRH antagonist versus GnRH agonist protocol in poor ovarian responders undergoing IVF. Hum Reprod 2011;26(10):27422749. https://doi.org/10.1093/humrep/der240.Google Scholar
Sunkara, SK, Coomarasamy, A, Faris, R, Braude, P, Khalaf, Y. Long gonadotropin-releasing hormone agonist versus short agonist versus antagonist regimens in poor responders undergoing in vitro fertilization: a randomized controlled trial. Fertil Steril 2014;101(1):147153.CrossRefGoogle ScholarPubMed
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update 2017;23(5):560579. https://doi.org/10.1093/humupd/dmx017.Google Scholar
Sunkara, SK, Rittenberg, V, Raine-Fenning, N, et al. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod 2011;26:17681774.Google Scholar
Drakopoulos, P, Blockeel, C, Stoop, D, et al. Conventional ovarian stimulation and single embryo transfer for IVF/ICSI. How many oocytes do we need to maximize cumulative live birth rates after utilization of all fresh and frozen embryos? Hum Reprod 2016;31(2):370376. https://doi.org/10.1093/humrep/dev316.Google Scholar
Youssef, MA, van Wely, M, Mochtar, M, et al. Low dosing of gonadotropins in in vitro fertilization cycles for women with poor ovarian reserve: systematic review and meta-analysis. Fertil Steril 2017;109(2): 289301.CrossRefGoogle Scholar
Practice Committee of the American Society for Reproductive Medicine. Electronic address: . Comparison of pregnancy rates for poor responders using IVF with mild ovarian stimulation versus conventional IVF: a guideline Fertil Steril 2018;109(6):993999.Google Scholar
Park, J-Y, Su, Y-Q, Ariga, M, et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 2004;303:682684.CrossRefGoogle ScholarPubMed
Lehert, P, Kolibianakis, EM, Venetis, CA, et al. Recombinant human follicle-stimulating hormone (r-hFSH) plus recombinant luteinizing hormone versus r-hFSH alone for ovarian stimulation during assisted reproductive technology: systematic review and meta-analysis. Reprod Biol Endocrinol 2014;12:17. https://doi.org/10.1186/1477-7827-12-17.CrossRefGoogle ScholarPubMed
Mochtar, MH, Danhof, NA, Ayeleke, RO, Van der Veen, F, van Wely, M. Recombinant luteinizing hormone (rLH) and recombinant follicle stimulating hormone (rFSH) for ovarian stimulation in IVF/ICSI cycles. Cochrane Database Syst Rev 2017;5:CD005070. doi: 10.1002/14651858.CD005070.pub3.Google ScholarPubMed
Humaidan, P, Chin, W, Rogoff, D, et al. Efficacy and safety of follitropin alfa/lutropin alfa in ART: a randomized controlled trial in poor ovarian responders. Hum Reprod 2017;32(7):15371538.Google Scholar
Alviggi, C, Conforti, A, Esteves, SC, et al. Recombinant luteinizing hormone supplementation in assisted reproductive technology: a systematic review. Fertil Steril 2018;109(4):644664.Google Scholar
Fauser, BC, Alper, MM, Ledger, W, et al. Pharmacokinetics and follicular dynamics of corifollitropin alfa versus recombinant FSH during ovarian stimulation for IVF. Reprod Biomed Online 2010;21(5):593601.Google Scholar
Polyzos, NP, Devos, M, Humaidan, P, et al. Corifollitropin alfa followed by rFSH in a GnRH antagonist protocol for poor ovarian responder patients: an observational pilot study. Fertil Steril 2013;99(2):422426.CrossRefGoogle Scholar
Kolibianakis, EM, Venetis, C.A. CA, J.K. Bosdou JK, et al. Corifollitropin alfa compared with follitropin beta in poor responders undergoing ICSI: a randomized controlled trial. Hum Reprod 2015;30(2):432440. https://doi.org/10.1093/humrep/deu301.CrossRefGoogle ScholarPubMed
Fabozzi, G, Giannini, A, Piscitelli, VP, Colicchia, A. Adjuvants therapies for women undergoing IVF: is there any evidence of their safety and efficacy? An updated mini-review. Obstet Gynecol Int J 2017;7(4):00254. doi: 10.15406/ogij.2017.07.00254.Google Scholar
Casson, PR, Lindsay, MS, Pisarska, MD, Carson, SA, Buster, JE. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum Reprod 2000;15(10):21292132.Google Scholar
Weil, S, Vendola, K, Zhou, J, Bondy, CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab 1999;84(8):29512956.CrossRefGoogle ScholarPubMed
Prizant, H, Gleicher, N, Sen, A. Androgen actions in the ovary: balance is key. J Endocrinol 2014;222(3):R141R151. https://joe.bioscientifica.com/view/journals/joe/222/3/R141.xml.Google Scholar
Nagels, HE, Rishworth, JR, Siristatidis, CS, Kroon, B. Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction. Cochrane Database Syst Rev 2015;11:CD009749. doi:10.1002/14651858.CD009749.pub2.Google Scholar
Zhang, M, Niu, W, Wang, Y, et al. Dehydroepiandrosterone treatment in women with poor ovarian response undergoing IVF or ICSI: a systematic review and meta-analysis. J Assist Reprod Genet 2016;33:981991. doi 10.1007/s10815-016-0713-5.CrossRefGoogle ScholarPubMed
Haahr, T, Esteves, SC, Humaidan, P. Individualized controlled ovarian stimulation in expected poor-responders: an update. Reprod Biol Endocrinol 2018;16(1):20. doi:10.1186/s12958-018-0342-1.Google Scholar
Duffy, JMN, Ahmad, G, Mohiyiddeen, L, Nardo, LG, Watson, A. Growth hormone for in vitro fertilization. Cochrane Database Syst Rev 2010;1:CD000099. doi: 10.1002/14651858.CD000099.pub3.Google Scholar
Yoshimura, Y, Ando, M, Nagamatsu, S, et al. Effects of insulin-like growth factor-I on follicle growth, oocyte maturation, and ovarian steroidogenesis and plasminogen activator activity in the rabbit. Biol Reprod 1996;55(1):152160.CrossRefGoogle ScholarPubMed
Kolibianakis, E, Venetis, C, Diedrich, K, Tarlatzis, B, Griessinger, G. Addition of growth hormone to gonadotropins in ovarian stimulation of poor responders treated by in-vitro fertilization: a systemic review and meta-analysis. Hum Reprod Update 2009;15:613622.Google Scholar
Jeve, YB, Bhandari, HM. Effective treatment protocol for poor ovarian response: a systematic review and meta-analysis. J Hum Reprod Sci 2016;9:7081.Google Scholar
Fanchin, R, Cunha-Filho, JS, Schonäuer, LM, et al. Coordination of early antral follicles by luteal estradiol administration provides a basis for alternative controlled ovarian hyperstimulation regimens. Fertil Steril 2003;79:316321.Google Scholar
Fanchin, R, Salomon, L, Castelo‐Branco, A, et al. Luteal estradiol pre‐treatment coordinates follicular growth during controlled ovarian hyperstimulation with GnRH antagonists. Hum Reprod 2003;18(12):26982703. https://doi.org/10.1093/humrep/deg516.CrossRefGoogle ScholarPubMed
Reynolds, KA, Omurtag, KR, Jimenez, PT, et al. Cycle cancellation and pregnancy after luteal estradiol priming in women defined as poor responders: a systematic review and meta-analysis. Hum Reprod 2013;28(11):29812989.Google Scholar
Farquhar, C, Rombauts, L, Kremer, JAM, Lethaby, A, Ayeleke, RO. Oral contraceptive pill, progestogen or oestrogen pretreatment for ovarian stimulation protocols for women undergoing assisted reproductive techniques. Cochrane Database Syst Rev 2017;5:CD006109. doi: 10.1002/14651858.CD006109.pub3.Google Scholar
Garcia-Velasco, JA, Fatemi, HM. To pill or not to pill in GnRH antagonist cycles: that is the question! Reprod Biomed Online 2014;30(1):3942.Google Scholar
Cédrin-Durnerin, B, Bständig, I, Parneix, V, et al. Effects of oral contraceptive, synthetic progestogen or natural estrogen pre-treatments on the hormonal profile and the antral follicle cohort before GnRH antagonist protocol. Hum Reprod 2007;22(1):109116. https://doi.org/10.1093/humrep/del340.Google Scholar
Griesinger, G, Kolibianakis, EM, Venetis, C, Diedrich, K, Tarlatzis, B. Oral contraceptive pretreatment significantly reduces ongoing pregnancy likelihood in gonadotropin-releasing hormone antagonist cycles: an updated meta-analysis. Fertil Steril 2010;94(6):23822384.Google Scholar
Bermejo, A, Iglesias, C, Ruiz-Alonso, M, et al. The impact of using the combined oral contraceptive pill for cycle scheduling on gene expression related to endometrial receptivity. Hum Reprod 2014;29(6):12711278. https://doi.org/10.1093/humrep/deu065.Google Scholar
Kuang, Y, Chen, Q, Hong, Q, et al. Double stimulations during the follicular and luteal phases of poor responders in IVF/ICSI programmes (Shanghai protocol). Reprod Biomed Online 2014; 29(6):684691.Google Scholar
Baerwald, AR, Adams, GP, Pierson, RA. Characterization of ovarian follicular wave dynamics in women. Biol Reprod 2003;69(3):10231031. https://doi.org/10.1095/biolreprod.103.017772.CrossRefGoogle ScholarPubMed
Ubaldi, FM, Capalbo, A, Vaiarelli, A, et al. Follicular versus luteal phase ovarian stimulation during the same menstrual cycle (DuoStim) in a reduced ovarian reserve population results in a similar euploid blastocyst formation rate: new insight in ovarian reserve exploitation. Fertil Steril 2016;105:1488.e1–1495.e1.Google Scholar
Cimadomo, D, Vaiarelli, A, Colamaria, S, et al. Luteal phase anovulatory follicles result in the production of competent oocytes: intra-patient paired case-control study comparing follicular versus luteal phase stimulations in the same ovarian cycle. Hum Reprod 2018;33(8):14421448. https://doi.org/10.1093/humrep/dey217.Google Scholar
Humaidan, P, Ejdrup Bredkjær, H, Bungum, L, et al. GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Hum Reprod 2005;20(5):12131220. https://doi.org/10.1093/humrep/deh765.CrossRefGoogle ScholarPubMed
Lin, MH, Wu, FS, Lee, RK, et al. Dual trigger with combination of gonadotropin-releasing hormone agonist and human chorionic gonadotropin significantly improves the live-birth rate for normal responders in GnRH-antagonist cycles. Fertil Steril 2013;100(5):12961302.Google Scholar
Zhang, J, Wang, Y, Mao, X, et al. Dual trigger of final oocyte maturation in poor ovarian responders undergoing IVF/ICSI cycles. Reprod Biomed Online 2017;35(6):701707.Google Scholar
Eser, A, Devranoğlu, B, Bostanc Ergen, E, Yayla Abide, Ç. Dual trigger with gonadotropin-releasing hormone and human chorionic gonadotropin for poor responders. J Turk Ger Gynecol Assoc 2018;19(2):98103.Google Scholar
Cobo, A, Garrido, N, Crespo, J, José, R, Pellicer, A. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online 2012;24(4):424432.Google Scholar
Chatziparasidou, A, Nijs, M, Moisidou, M, et al. Accumulation of oocytes and/or embryos by vitrification: a new strategy for managing poor responder patients undergoing pre implantation diagnosis. F1000Res 2014;2:240.Google Scholar
Çelik, S, Turgut, NE, Cengiz Çelik, D, et al. The effect of the pooling method on the live birth rate in poor ovarian responders according to the Bologna criteria. Turk J Obstet Gynecol 2018;15(1):3945.Google Scholar
Roque, M, Valle, M, Sampaio, M, Geber, S. Does freeze-all policy affect IVF outcomes in poor responders? Ultrasound Obstet Gynecol 2018;52(4):530534. https://doi.org/10.1002/uog.19000.CrossRefGoogle Scholar
Haahr, T, Esteves, SC, Humaidan, P. Individualized controlled ovarian stimulation in expected poor-responders: an update. Reprod Biol Endocrinol 2018;16(1):20. doi:10.1186/s12958-018-0342-1.Google Scholar
Sighinolfi, G, Sunkara, SK, La Marca, A. New strategies of ovarian stimulation based on the concept of ovarian follicular waves: from conventional to random and double stimulation. Reprod Biomed Online 2018;37(4):489497.Google Scholar

References

Frank, S. Polycystic ovarian syndrome. N Engl J Med 1995;333:853861.Google Scholar
Homburg, R. Polycystic ovary syndrome–from gynaecological curiosity to multisystem endocrinopathy. Hum Reprod 1996;11:2939.Google Scholar
Stein, IF, Leventhal, ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 1935;29:181191.Google Scholar
Balen, A. The pathophysiology of polycystic ovary syndrome: trying to understand PCOS and its endocrinology. Best Pract Res Clin Obstet Gynaecol 2004;18:685706.Google Scholar
Dunaif, A, Segal, KR, Futterweit, W, Dobrjansky, A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989;38:11651174.Google Scholar
Adashi, EY, Resnick, CE, D’Ercole, AJ, Svoboda, ME, Van Wyk, JJ. Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function. Endocr Rev 1985;6:400420.Google Scholar
Barbieri, RL, Makris, A, Randall, RW, et al. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab 1986;62:904910.CrossRefGoogle ScholarPubMed
Nestler, JE, Powers, LP, Matt, DW, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab 1991;72:8389.Google Scholar
Zawadzki, JK, Dunaif, A. Diagnostic criteria for polycystic syndrome: towards a rational approach. In: Dunaif, A, Givens, JR, Haseltine, FP, et al., eds. Polycystic ovary syndrome. Boston: Blackwell Scientific; 1992:337384.Google Scholar
Rotterdam ESHRE/ASRM‐Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long‐term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19(1):4147.CrossRefGoogle Scholar
Lizneva, D, Suturina, L, Walker, W, et al. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril 2016;106(1):615.Google Scholar
Erel, CT, Senturk, LM. The impact of body mass index on assisted reproduction. Curr Opin Obstet Gynecol 2009;21:228235.Google Scholar
Balen, AH, Conway, GS, Kaltsas, G, et al. Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod 1995;10:21072111.Google Scholar
Kiddy, DS, Sharp, PS, White, DM, et al. Differences in clinical and endocrine features between obese and non-obese subjects with polycystic ovary syndrome: an analysis of 263 consecutive cases. Clin Endocrinol (Oxf) 1990;32:213220.Google Scholar
Goldzieher, JW, Axelrod, LR. Clinical and biochemical features of polycystic ovarian disease. Fertil Steril 1963;14:631653.CrossRefGoogle ScholarPubMed
Moran, LJ, Pasquali, R, Teede, HJ, Hoeger, KM, Norman, RJ. Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil Steril 2009;92(6):19661982.Google Scholar
Practice Committee of the American Society for Reproductive Medicine. Obesity and reproduction: a committee opinion. Fertil Steril 2015;104(5):11161126.Google Scholar
National Institute for Clinical Excellence. Fertility: assessment and treatment for people with fertility problems. Clinical Guideline; London: RCOG Press; 2004.Google Scholar
Legro, RS, Kunselman, AR, Brzyski, RG, et al. The Pregnancy in Polycystic Ovary Syndrome II (PPCOS II) trial: rationale and design of a double-blind randomized trial of clomiphene citrate and letrozole for the treatment of infertility in women with polycystic ovary syndrome. Contemp Clin Trials 2012;33(3):470481.Google Scholar
Legro, RS, Brzyski, RG, Diamond, MP, et al. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. N Engl J Med 2014;371:119129.Google Scholar
Caserta, D, Adducchio, G, Picchia, S, et al. Metabolic syndrome and polycystic ovary syndrome: an intriguing overlapping. Gynecol Endocrinol 2014;30(6):397402.Google Scholar
Salehi, M, Bravo-Vera, R, Sheikh, A, Gouller, A, Poretsky, L. Pathogenesis of polycystic ovary syndrome: what is the role of obesity? Metabolism 2004;53(3):358376.Google Scholar
Douchi, T, Kuwahata, R, Yamamoto, S, et al. Relationship of upper body obesity to menstrual disorders. Acta Obstet Gynecol Scand 2002;81:147150.Google Scholar
Hartz, AJ, Rupley, DC, Rimm, AA. The association of girth measurements with disease in 32,856 women. Am J Epidemiol 1984;119:7180.Google Scholar
Pasquali, R, Pelusi, C, Genghini, S, Cacciari, M, Gambineri, A. Obesity and reproductive disorders in women. Hum Reprod Update 2003;9:359372.Google Scholar
Norman, RJ, Masters, SC, Hague, W, et al. Metabolic approaches to the subclassification of polycystic ovary syndrome. Fertil Steril 1995;63(2):329335.Google Scholar
Gesink Law, DC, Maclehose, RF, Longnecker, MP. Obesity and time to pregnancy. Hum Reprod 2007;22:414420.Google Scholar
Fedorcsak, P, Dale, PO, Storeng, R, et al. Impact of overweight and underweight on assisted reproduction treatment. Hum Reprod 2004;19:25232528.CrossRefGoogle ScholarPubMed
Cedergren, MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol 2004;103:219224.Google Scholar
Weiss, JL, Malone, FD, Emig, D, et al. FASTER Research Consortium. Obesity, obstetric complications and cesarean delivery rate: a population-based screening study. Am J Obstet Gynecol 2004;190:10911097.Google Scholar
Metwally, M, Ledger, WL, Li, TC. Reproductive endocrinology and clinical aspects of obesity in women. Ann N Y Acad Sci 2008;1127:140146.Google Scholar
Lintsen, AM, Pasker-de Jong, PC, De Boer, EJ, et al. Effects of subfertility cause, smoking and body weight on the success rate of IVF. Hum Reprod 2005;20(7):18671875.Google Scholar
Loveland, JB, McClamrock, HD, Malinow, AM, Sharara, FI. Clinical assisted reproduction: increased body mass index has a deleterious effect on in vitro fertilization outcome. J Assist Reprod Genet 2001;18(7):382386.CrossRefGoogle Scholar
Dechaud, H, Anahory, T, Reyftmann, L, et al. Obesity does not adversely affect results in patients who are undergoing in vitro fertilization and embryo transfer. Eur J Obstet Gynecol Reprod Biol 2006;127:8893.Google Scholar
Lashen, H, Ledger, W, Bernal, AL, Barlow, D. Extremes of body mass do not adversely affect the outcome of superovulation and in-vitro fertilization. Hum Reprod 1999;14:712715.Google Scholar
Martinuzzi, K, Ryan, S, Luna, M, Copperman, AB. Elevated body mass index (BMI) does not adversely affect in vitro fertilization outcome in young women. J Assist Reprod Genet 2008;25:169175.Google Scholar
MacKenna, A, Schwarze, JE, Crosby, JA, Zegers-Hochschild, F. Outcome of assisted reproductive technology in overweight and obese women. JBRA Assist Reprod 2017;21(2):7983.CrossRefGoogle ScholarPubMed
Balaban, B, Urman, B. Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online 2006;12:608615.Google Scholar
Carrell, DT, Jones, KP, Peterson, CM, et al. Body mass index is inversely related to intrafollicular HCG concentrations, embryo quality and IVF outcome. Reprod Biomed Online 2001;3:109111.Google Scholar
Esinler, I, Bozdag, G, Yarali, H. Impact of isolated obesity on ICSI outcome. Reprod Biomed Online 2008;17:583587.CrossRefGoogle ScholarPubMed
Wittemer, C, Ohl, J, Bailly, M, et al. Does body mass index of infertile women have an impact on IVF procedure and outcome? J Assist Reprod Genet 2000;17:547552.Google Scholar
Jungheim, ES, Moley, KH. Current knowledge of obesity’s effects in the pre- and periconceptional periods and avenues for future research. Am J Obstet Gynecol 2010;203(6):525530.Google Scholar
Pandey, S, Pandey, S, Maheshwari, A, Bhattacharya, S. The impact of female obesity on the outcome of fertility treatment. J Hum Reprod Sci 2010;3(2):6267.Google Scholar
Metwally, M, Cutting, R, Tipton, A, et al. Effect of increased body mass index on oocyte and embryo quality in IVF patients. Reprod Biomed Online 2007;15:532538.Google Scholar
Provost, MP, Acharya, KS, Acharya, CR, et al. Pregnancy outcomes decline with increasing body mass index: analysis of 239,127 fresh autologous in vitro fertilization cycles from the 2008–2010 Society for Assisted Reproductive Technology registry. Fertil Steril 2016;105(3):663669.CrossRefGoogle Scholar
Provost, MP, Acharya, KS, Acharya, CR, et al. Pregnancy outcomes decline with increasing recipient body mass index: an analysis of 22,317 fresh donor/recipient cycles from the 2008–2010 Society for Assisted Reproductive Technology Clinic Outcome Reporting System registry. Fertil Steril 2016;105(2):364368.Google Scholar
Rittenberg, V, Seshadri, S, Sunkara, SK, et al. Effect of body mass index on IVF treatment outcome: an updated systematic review and meta-analysis. Reprod Biomed Online 2011;23(4):421439.CrossRefGoogle ScholarPubMed
Escobar-Morreale, HF, Luque-Ramírez, M, González, F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and meta analysis. Fertil Steril 2011;95(3):10481058.CrossRefGoogle Scholar
Paepegaey, AC, Genser, L, Bouillot, JL, et al. High levels of CRP in morbid obesity: the central role of adipose tissue and lessons for clinical practice before and after bariatric surgery. Surg Obes Relat Dis 2015;11(1):148154.Google Scholar
Faucher, G, Guénard, F, Bouchard, L, et al. Genetic contribution to C-reactive protein levels in severe obesity. Mol Genet Metab 2012;105(3):494501.Google Scholar
Kadowaki, T. Yamauchi, T. Adiponectin and adiponectin receptors. Endocr Rev 2005;26:439451.Google Scholar
Yuan, G, Zhou, L, Tang, J, et al. Serum CRP levels are equally elevated in newly diagnosed type 2 diabetes and impaired glucose tolerance and related to adiponectin levels and insulin sensitivity. Diabetes Res clin Pract 2006;72(3):244250.Google Scholar
Sieminska, L, Marek, B, Kos-Kudla, B, et al. Serum adiponectin in women with polycystic ovarian syndrome and its relation to clinical, metabolic and endocrine parameters. J Endocrinol Investig 2004;27(6):528534.Google Scholar
Kopp, HP, Krzyzanowska, K, Möhlig, M, et al. Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int J Obes 2005;29(7):766771.Google Scholar
Esposito, K, Pontillo, A, Di Palo, C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 2003;289(14):17991804.Google Scholar
Woelnerhanssen, B, Peterli, R, Steinert, RE, et al. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy – a prospective randomized trial. Surg Obes Relat Dis 2011;7(5):561568.Google Scholar
Wadden, TA, Foster, GD. Behavioral treatment of obesity. Med Clin N Am 2000;84(2):441461.Google Scholar
Wadden, TA, Webb, VL, Moran, CH, Bailer, BA. Lifestyle modification for obesity: new developments in diet, physical activity, and behavior therapy. Circulation 2012;125(9):11571170.Google Scholar
Pucci, A, Finer, N. New medications for treatment of obesity: metabolic and cardiovascular effects. Can J Cardiol 2015;31(2):142152.Google Scholar
Apovian, CM, Aronne, LJ, Bessesen, DH, et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2015;100(2):342362.Google Scholar
Keating, GM, Jarvis, B. Orlistat: in the prevention and treatment of type 2 diabetes mellitus. Drugs 2001;61:21072119.Google Scholar
Inge, TH, Jenkins, TM, Zeller, M, et al. Baseline BMI is a strong predictor of nadir BMI after adolescent gastric bypass. J Pediatr 2010;156(1):103108.Google Scholar
Deitel, M, Stone, E, Kassam, HA, Wilk, EJ, Sutherland, DJ. Gynecologic-obstetric changes after loss of massive excess weight following bariatric surgery. J Am Coll Nutr 1988;7:147153.Google Scholar
Abiad, F, Abbas, HA, Hamadi, C, Ghazeeri, G. Bariatric surgery in the management of adolescent and adult obese patients with polycystic ovarian syndrome. J Obes Weight Loss Ther 2016;6:303.Google Scholar
Abiad, F, Khalife, D, Safadi, B, et al. The effect of bariatric surgery on inflammatory markers in women with polycystic ovarian syndrome. Diabetes Metab Syndr 2018;12(6):9991005.Google Scholar
Sheiner, E, Levy, A, Silverberg, D, et al. Pregnancy after bariatric surgery is not associated with adverse perinatal outcome. Am J Obstet Gynecol 2004;190:13351340.Google Scholar
Printen, KJ, Scott, D. Pregnancy following gastric bypass for the treatment of morbid obesity. Am Surg 1982;48:363365.Google Scholar
Marceau, P, Kaufman, D, Biron, S, et al. Outcome of pregnancies after biliopancreatic diversion. Obes Surg 2004;14:318324.Google Scholar
Mutsaerts, MA, van Oers, AM, Groen, H, et al. Randomized trial of a lifestyle program in obese infertile women. N Engl J Med 2016;374:19421953.CrossRefGoogle ScholarPubMed
Einarsson, S, Bergh, C, Friberg, B, et al. Weight reduction intervention for obese infertile women prior to IVF: a randomized controlled trial. Hum Reprod 2017;32:16211630.Google Scholar
Norman, RJ, Mol, BWJ. Successful weight loss interventions before in vitro fertilization: fat chance? Fertil Steril 2018;110:581586.Google Scholar
Greenblatt, RB, Barfield, WE, Jungck, EC, Ray, AW. Induction of ovulation with MRL/41. Preliminary report. J Am Med Assoc 1961;178:101104.Google Scholar
Ecklund, LC, Usadi, RS. Endocrine and reproductive effects of polycystic ovarian syndrome. Obstet Gynecol Clin North Am 2015;42(1):5565.Google Scholar
Practice Committee of the American Society for Reproductive Medicine. Use of clomiphene citrate in infertile women: a committee opinion. Fertil Steril 2013;100(2):341348.CrossRefGoogle Scholar
Hammond, MG. Monitoring techniques for improved pregnancy rates during clomifene ovulation induction. Fertil Steril 1984;42:499508.Google Scholar
Dickey, RP, Taylor, SN, Curole, DN, et al. Incidence of spontaneous abortion in clomifene pregnancies. Hum Reprod 1996;11:26232628.Google Scholar
Gysler, M, March, CM, Mishell, DR Jr., Bailey, EJ. A decade’s experience with an individualized clomiphene treatment regimen including its effect on the postcoital test. Fertil Steril 1982;37:161167.CrossRefGoogle ScholarPubMed
Eden, JA, Place, J, Carter, GD, et al. The effect of clomiphene citrate on follicular phase increase in endometrial thickness and uterine volume. Fertil Steril 1989;73:187190.Google Scholar
Bonhoff, AJ, Naether, OG, Johannisson, E. Effects of clomiphene citrate stimulation on endometrial structure in infertile women. Hum Reprod 1996;11(4):844849.Google Scholar
Dehbashi, S, Parsanezhad, ME, Alborzi, S, Zarei, A. Effect of clomiphene citrate on endometrium thickness and echogenic patterns. Int J Gynaecol Obstet 2003;80(1):4953.Google Scholar
Thompson, LA, Barratt, CL, Thornton, SJ, Bolton, AE, Cooke, ID. The effects of clomiphene citrate and cyclofenil on cervical mucus volume and receptivity over the periovulatory period. Fertil Steril 1993;59(1):125129.Google Scholar
Kousta, E, White, DM, Franks, S. Modern use of clomiphene citrate in induction of ovulation. Hum Reprod Update 1997;3(4):359365.Google Scholar
Hull, MG, Savage, PE, Bromham, DR, Ismail, AA, Morris, AF. The value of a single serum progesterone measurement in the midluteal phase as a criterion of a potentially fertile cycle (‘ovulation’) derived from treated and untreated conception cycles. Fertil Steril 1982;37(3):355360.Google Scholar
Talbert, LM. Clomiphene citrate induction of ovulation. Fertil Steril 1983;39(6):742743.Google Scholar
Chaabane, S, Sheehy, O, Monnier, P, et al. Ovarian stimulation, intrauterine insemination, multiple pregnancy and major congenital malformations: a systematic review and meta-analysis-The ART_Rev Study. Curr Drug Saf 2016;11(3):222261.Google Scholar
Senturk, LM, Erel, CT. Thin endometrium in assisted reproductive technology. Curr Opin Obstet Gynecol 2008;20:221228.Google Scholar
Oliveira, JB, Baruffi, RL, Mauri, AL, et al. Endometrial ultrasonography as a predictor of pregnancy in an in-vitro fertilization programme after ovarian stimulation and gonadotrophin-releasing hormone and gonadotrophins. Hum Reprod 1997;12(11):25152518.Google Scholar
Schild, RL, Knobloch, C, Dorn, C, et al. Endometrial receptivity in an in vitro fertilization program as assessed by spiral artery blood flow, endometrial thickness, endometrial volume, and uterine artery blood flow. Fertil Steril 2001;75:361366.Google Scholar
Wu, Y, Gao, X, Lu, X, et al. Endometrial thickness affects the outcome of in vitro fertilization and embryo transfer in normal responders after GnRH antagonist administration. Reprod Biol Endocrinol 2014;12(1):96.CrossRefGoogle ScholarPubMed
Wang, Y, Zhu, Y, Sun, Y, et al. Ideal embryo transfer position and endometrial thickness in IVF embryo transfer treatment. Int J Gynecol Obstet 2018;143(3):282288.Google Scholar
Lobo, RA, Gysler, M, March, CM, Goebelsmann, U, Mishell, DR Jr. Clinical and laboratory predictors of clomiphene response. Fertil Steril 1982;37(2):168174.CrossRefGoogle ScholarPubMed
Douchi, T, Oki, T, Yamasaki, H, et al. Body fat patterning in polycystic ovary syndrome women as a predictor of the response to clomiphene. Acta Obstet Gynecol Scand 2004;83:838841.Google Scholar
Imani, B, Eijkemans, MJ, te Velde, ER, Habbema, JD, Fauser, BC. Predictors of chances to conceive in ovulatory patients during clomiphene citrate induction of ovulation in normogonadotropic oligoamenorrheic infertility. J Clin Endocrinol Metab 1999;84(5):16171622.Google Scholar
Gindoff, PR, Jewelewicz, R. Reproductive potential in the older woman. Fertil Steril 1986;46(6):9891001.Google Scholar
Rossing, MA, Daling, JR, Weiss, NS, et al. Ovarian tumors in a cohort of infertile women. N Engl J Med 1994;331:771776.Google Scholar
Balen, A. Anovulatory infertility and ovulation induction. Policy and Practice subcommittee of the British Fertility Society. Hum Reprod 1997;12 (11 Suppl):8387.Google Scholar
Balen, AH, Morley, LC, Misso, M, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update 2016;22(6):687708.Google Scholar
Palomba, S. Aromatase inhibitors for ovulation induction. J Clin Endocrinol Metab 2015;100(5):17421747.Google Scholar
Holzer, H, Casper, R, Tulandi, T. A new era in ovulation induction. Fertil Steril 2006;85(2):277284.Google Scholar
Kar, S. Current evidence supporting “letrozole” for ovulation induction. J Hum Reprod Sci 2013;6(2):9398.Google Scholar
Mitwally, MF, Biljan, MM, Casper, RF. Pregnancy outcome after the use of an aromatase inhibitor for ovarian stimulation. Am J Obstet Gynecol 2005;192(2):381386.Google Scholar
Franik, S, Eltrop, SM, Kremer, JA, Kiesel, L, Farquhar, C. Aromatase inhibitors (letrozole) for subfertile women with polycystic ovary syndrome. Cochrane Database Syst Rev 2018;5:CD010287.Google Scholar
Biljan, MM, Hemmings, R, Brassard, N. The outcome of 150 babies following the treatment with letrozole or letrozole and gonadotropins. Fertil Steril 2005;84:S95.Google Scholar
Tulandi, T, Martin, J, Al-Fadhli, R, et al. Congenital malformations among 911 newborns conceived after infertility treatment with letrozole or clomiphene citrate. Fertil Steril 2006;85(6):17611765.Google Scholar
American College of Obstetricians and Gynecologists. Polycystic ovary syndrome. ACOG practice bulletin no. 194. Obstet Gynecol 2018;11:131.Google Scholar
Velazquez, EM, Mendoza, S, Hamer, T, Sosa, F, Glueck, CJ. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism 1994;43:647654.Google Scholar
Williamson, DF, Pamuk, E, Thun, M, et al. Prospective study of intentional weight loss and mortality in never-smoking overweight US white women aged 40–64 years. Am J Epidemiol 1995;141:11281141.Google Scholar
Kiddy, DS, Hamilton-Fairley, D, Bush, A, et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol 1992;36:105111.Google Scholar
Crosignani, PG, Colombo, M, Vegetti, W, et al. Overweight and obese anovulatory patients with polycystic ovaries: parallel improvements in anthropometric indices, ovarian physiology and fertility rate induced by diet. Hum Reprod 2003;18:19281932.CrossRefGoogle ScholarPubMed
Harborne, L, Fleming, R, Lyall, H, Norman, J, Sattar, N. Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet 2003;361:18941901.Google Scholar
Nawaz, FH, Khalid, R, Naru, T, Rizvi, J. Does continuous use of metformin throughout pregnancy improve pregnancy outcomes in women with polycystic ovarian syndrome? J Obstet Gynaecol Res 2008;34(5):832837.Google Scholar
Morley, LC, Tang, TM, Balen, AH. Metformin therapy for the management of infertility in women with polycystic ovary syndrome: Scientific Impact Paper No. 13. BJOG 2017;124(12):E306E313.Google Scholar
Legro, RS, Barnhart, HX, Schlaff, WD, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med 2007;356(6):551566.Google Scholar
Moll, E, van der Veen, F, van Wely, M. The role of metformin in polycystic ovary syndrome: a systematic review. Hum Reprod Update 2007;13(6):527537.Google Scholar
Palomba, S, Pasquali, R, Orio, JF, Nestler, JE. Clomiphene citrate, metformin or both as first-step approach in treating anovulatory infertility in patients with polycystic ovary syndrome (PCOS): a systematic review of head-to-head randomized controlled studies and meta-analysis. Clin Endocrinol 2009;70:311321.Google Scholar
Morley, LC, Tang, T, Yasmin, E, Norman, RJ, Balen, AH. Insulin‐sensitising drugs (metformin, rosiglitazone, pioglitazone, D‐chiro‐inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev 2017;11:CD003053.Google Scholar
Practice Committee of the American Society for Reproductive Medicine. Role of metformin for ovulation induction in infertile patients with polycystic ovary syndrome (PCOS): a guideline. Fertil Steril 2017;108(3):426441.Google Scholar
Elnashar, A, Abdelmageed, E, Fayed, M, Sharaf, M. Clomiphene citrate and dexamethazone in treatment of clomiphene citrate-resistant polycystic ovary syndrome: a prospective placebo-controlled study. Hum Reprod 2006;21(7):18051808.Google Scholar
Esmaeilzadeh, S, Amiri, MG, Basirat, Z, Shirazi, M. Does adding dexamethasone to clomiphene citrate improve ovulation in PCOS patients? A triple-blind randomized clinical trial study. Int J Fertil Steril 2011;5(1):912.Google Scholar
Shabana, AA, Al-Halby, AE, Abd Hamid, ES, El-Naggar, AM. Letrozole with dexamethasone versus clomiphene citrate with dexamethasone for induction of ovulation in polycystic ovary. Menoufia Med J 2018;31(1):3845.Google Scholar
Badawy, A, State, O, Abdelgawad, S. N-acetyl cysteine and clomiphene citrate for induction of ovulation in polycystic ovary syndrome: a cross-over trial. Acta Obstet Gynecol Scand 2007;86(2):218222.Google Scholar
Lak, TB, Hajshafiha, M, Nanbakhsh, F, Oshnouei, S. N-acetyl cysteine in ovulation induction of PCOS women underwent intrauterine insemination: An RCT. Int J Reprod Biomed 2017;15(4):203206.Google Scholar

References

Gjønnaess, H. Ovarian electrocautery in the treatment of women with polycystic ovary syndrome (PCOS): factors affecting the results. Acta Obstet Gynecol Scand 1994;73(5):407412.Google Scholar
Li, TC, Saravelos, H, Chow, MS, Chisabingo, R, Cooke, ID. Factors affecting the outcome of laparoscopic ovarian drilling for polycystic ovary syndrome in women with anovulatory infertility. Br J Obstet Gynaecol 1998;105:338344.Google Scholar
Armar, NA, McGarrigle, HHG, Honour, J, et al. Laparoscopic ovarian diathermy in the management of anovulatory infertility in women with polycystic ovaries: endocrine changes and clinical outcome. Fertil Steril 1990;53:4549.Google Scholar
Balen, AH, Jacobs, HS. A prospective study comparing unilateral and bilateral laparoscopic ovarian diathermy in women with the polycystic ovary syndrome. Fertil Steril 1994;62:921925.Google Scholar
Bordewijk, EM, Ng, KY, Rakic, L, et al. Laparoscopic ovarian drilling for ovulation induction in women with anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev 2020;2:CD001122.Google Scholar
Api, M, Gorgen, H, Cetin, A. Laparoscopic ovarian drilling in polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2005;119:7681.Google Scholar
Amer, SA, Li, TC, Metwally, M, Emarh, M, Ledger, WL. Randomized controlled trial comparing laparoscopic ovarian diathermy with clomiphene citrate as a first-line method of ovulation induction in women with polycystic ovary syndrome. Hum Reprod 2009;24:219225.Google Scholar
Amer, S, Banu, Z, Li, TC, Cooke, ID. Long-term follow-up of patients with polycystic ovary syndrome after laparoscopic ovarian drilling: endocrine and ultrasonographic outcomes. Hum Reprod 2002;17(11):28512857.Google Scholar
Amer, SA, El Shamy, TT, James, C, Yosef, AH, Mohamed, AA. The impact of laparoscopic ovarian drilling on AMH and ovarian reserve: a meta-analysis. Reproduction 2017;154(1):R13R21.Google Scholar
Amer, S, Li, TC, Ledger, WL. Ovulation induction using laparoscopic ovarian drilling in women with polycystic ovarian syndrome: predictors of success. Hum Reprod 2004;19(8):17191724.Google Scholar
Balen, AH, Morley, LC, Misso, M, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update 2016;22(6):687708.Google Scholar
Weiss, NS, Nahuis, MJ, Bordewijk, E, et al. Gonadotrophins versus clomifene citrate with or without intrauterine insemination in women with normogonadotropic anovulation and clomifene failure (M-OVIN): a randomised, two-by-two factorial trial. Lancet 2018;391(10122):758765.Google Scholar
Weiss, NS, Kostova, E, Nahuis, M, et al. Gonadotrophins for ovulation induction in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2019;1:CD010290.Google Scholar
Pardo, M, Bancells, N. Artificial insemination with husband’s sperm (AIH). Techniques for sperm selection. Arch Androl 1989;22:1527.Google Scholar
Tan, SL, Child, TJ. In-vitro maturation of oocytes from unstimulated polycystic ovaries. Reprod Biomed Online 2002;4:1823.Google Scholar
Heijnen, E, Eijkemans, M, Hughes, E, et al. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update 2006;12(1):1321.Google Scholar
Sha, T, Wang, X, Cheng, W, Yan, Y. A meta-analysis of pregnancy-related outcomes and complications in women with polycystic ovary syndrome undergoing in vitro fertilization. Reprod Biomed Online 2019;39(2):281293.Google Scholar
Devroey, P, Polyzos, NP, Blockeel, C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod 2011;26(10):25932597.Google Scholar
Trounson, A, Wood, C, Kausche, A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril 1994;62(2):353362.Google Scholar
Barnes, FL, Crombie, A, Gardner, DK, et al. Blastocyst development and birth after in-vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum Reprod 1995;10(12):32433247.Google Scholar
Benkhalifa, M, Demirol, A, Ménézo, Y, et al. Natural cycle IVF and oocyte in-vitro maturation in polycystic ovary syndrome: a collaborative prospective study. Reprod Biomed Online 2009;18(1):2936.Google Scholar
Siristatidis, CS, Maheshwari, A, Vaidakis, D, Bhattacharya, S. In vitro maturation in subfertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database Syst Rev 2018;11:CD006606.Google Scholar
Albano, C, Felberbaum, RE, Smitz, J, et al. Ovarian stimulation with HMG: results of a prospective randomized phase III European study comparing the luteinizing hormone-releasing hormone (LHRH)-antagonist cetrorelix and the LHRH-agonist buserelin. Hum Reprod 2000;15(3):526531.Google Scholar
Borm, G, Mannaerts, B. Treatment with the gonadotrophin-releasing hormone antagonist ganirelix in women undergoing ovarian stimulation with recombinant follicle stimulating hormone is effective, safe and convenient: results of a controlled, randomized, multicentre trial. The European Orgalutran Study Group. Hum Reprod 2000;15(7):14901498.Google Scholar
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update 2017;23(5):560579.Google Scholar
Shin, JJ, Park, KE, Choi, YM, et al. Early gonadotropin-releasing hormone antagonist protocol in women with polycystic ovary syndrome: a preliminary randomized trial. Clin Exp Reprod Med 2018;45(3):135142.Google Scholar
Olivennes, F, Fanchin, R, Bouchard, P, et al. Triggering of ovulation by a gonadotropin-releasing hormone (GnRH) agonist in patients pretreated with a GnRH antagonist. Fertil Steril 1996;66:151153.Google Scholar
Fauser, BC, de Jong, D, Olivennes, F, et al. Endocrine profiles after triggering of final oocyte maturation with GnRH agonist after cotreatment with the GnRH antagonist ganirelix during ovarian hyperstimulation for in vitro fertilization. J Clin Endocrinol Metab 2002;87:709715.Google Scholar
Griesinger, G, Diedrich, K, Devroey, P, Kolibianakis, EM. GnRH agonist for triggering final oocyte maturation in the GnRH antagonist ovarian hyperstimulation protocol: a systematic review and meta-analysis. Hum Reprod Update 2006;12:159168.Google Scholar
Engmann, L, DiLuigi, A, Schmidt, D, et al. The use of gonadotropin-releasing hormone (GnRH) agonist to induce oocyte maturation after cotreatment with GnRH antagonist in high-risk patients undergoing in vitro fertilization prevents the risk of ovarian hyperstimulation syndrome: a prospective randomized controlled study. Fertil Steril 2008;89(1):8491.Google Scholar
Kummer, N, Benadiva, C, Feinn, R, et al. Factors that predict the probability of a successful clinical outcome after induction of oocyte maturation with a gonadotropin-releasing hormone agonist. Fertil Steril 2011;96(1):6368.Google Scholar
Griffin, D, Benadiva, C, Kummer, N, et al. Dual trigger of oocyte maturation with gonadotropin-releasing hormone agonist and low-dose human chorionic gonadotropin to optimize live birth rates in high responders. Fertil Steril 2012;97(6):13161320.Google Scholar
Humaidan, P, Bredkjær, HE, Westergaard, LG, et al. 1,500 IU human chorionic gonadotropin administered at oocyte retrieval rescues the luteal phase when gonadotropin-releasing hormone agonist is used for ovulation induction: a prospective, randomized, controlled study. Fertil Steril 2010;93(3):847854.Google Scholar
Seyhan, A, Ata, B, Polat, M, et al. Severe early ovarian hyperstimulation syndrome following GnRH agonist trigger with the addition of 1500 IU hCG. Hum Reprod 2013;28(9):25222528.Google Scholar
O’Neill, KE, Senapati, S, Maina, I, et al. GnRH agonist with low-dose hCG (dual trigger) is associated with higher risk of severe ovarian hyperstimulation syndrome compared to GnRH agonist alone. J Assist Reprod Genet 2016;33(9):11751184.Google Scholar
Fatemi, HM, Popovic-Todorovic, B. Implantation in assisted reproduction: a look at endometrial receptivity. Reprod Biomed Online 2013;27(5):530538.Google Scholar
Garcia-Velasco, JA. Agonist trigger: what is the best approach? Agonist trigger with vitrification of oocytes or embryos. Fertil Steril 2012;97(3):527528.Google Scholar
Doronzo, G, Russo, I, Mattiello, L, et al. Insulin activates vascular endothelial growth factor in vascular smooth muscle cells: influence of nitric oxide and of insulin resistance. Eur J Clin Invest 2004;34:664673.Google Scholar
Palomba, S, Falbo, A, La Sala, GB. Effects of metformin in women with polycystic ovary syndrome treated with gonadotrophins for in vitro fertilisation and intracytoplasmic sperm injection cycles: a systematic review and meta‐analysis of randomised controlled trials. BJOG 2013;120(3):267276.Google Scholar
Palomba, S, Falbo, A, Carrillo, L, et al. Metformin reduces risk of ovarian hyperstimulation syndrome in patients with polycystic ovary syndrome during gonadotropin-stimulated in vitro fertilization cycles: a randomized, controlled trial. Fertil Steril 2011;96(6):13841390.Google Scholar
Abdalmageed, OS, Farghaly, TA, Abdelaleem, AA, et al. Impact of metformin on IVF outcomes in overweight and obese women with polycystic ovary syndrome: a randomized double-blind controlled trial. Reprod Sci 2019;26(10):13361342.Google Scholar
Tso, LO, Costello, MF, Albuquerque, LE, Andriolo, RB, Macedo, CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2014;11:CD006105.Google Scholar
Bevilacqua, A, Bizzarri, M. Inositols in insulin signaling and glucose metabolism. Int J Endocrinol 2018;2018:1968450.Google Scholar
Genazzani, AD, Lanzoni, C, Ricchieri, F, Jasonni, VM. Myo-inositol administration positively affects hyperinsulinemia and hormonal parameters in overweight patients with polycystic ovary syndrome. Gynecol Endocrinol 2008;24(3):139144.Google Scholar
Costantino, D, Minozzi, G, Minozzi, E, Guaraldi, C. Metabolic and hormonal effects of myo-inositol in women with polycystic ovary syndrome: a double-blind trial. Eur Rev Med Pharmacol Sci 2009;13(2):105110.Google Scholar
Minozzi, M, Nordio, M, Pajalich, R. The combined therapy myo-inositol plus D-chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients. Eur Rev Med Pharmacol Sci 2013;17(4):537540.Google Scholar
Gateva, A, Unfer, V, Kamenov, Z. The use of inositol (s) isomers in the management of polycystic ovary syndrome: a comprehensive review. Gynecol Endocrinol 2018;34(7):545550.Google Scholar
Facchinetti, F, Orrù, B, Grandi, G, Unfer, V. Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): a meta-analysis of randomized clinical trials. Gynecol Endocrinol 2019;35(3):198206.Google Scholar
Taieb, J, Grynberg, M, Pierre, A, et al. FSH and its second messenger cAMP stimulate the transcription of human anti-Müllerian hormone in cultured granulosa cells. Mol Endocrinol 2011;25(4):645655.Google Scholar
Ciotta, L, Stracquadanio, M, Pagano, I, et al. Effects of myo-inositol supplementation on oocyte’s quality in PCOS patients: a double blind trial. Eur Rev Med Pharmacol Sci 2011;15(5):509514.Google Scholar
Unfer, V, Porcaro, G. Updates on the myo-inositol plus D-chiro-inositol combined therapy in polycystic ovary syndrome. Expert Rev Clin Pharmacol 2014;7(5):623631.Google Scholar
Colazingari, S, Fiorenza, MT, Carlomagno, G, Najjar, R, Bevilacqua, A. Improvement of mouse embryo quality by myo-inositol supplementation of IVF media. J Assist Reprod Genet 2014;31(4):463469.Google Scholar
Papaleo, E, Unfer, V, Baillargeon, JP, et al. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril 2009;91(5):17501754.Google Scholar
Laganà, AS, Vitagliano, A, Noventa, M, Ambrosini, G, D’Anna, R. Myo-inositol supplementation reduces the amount of gonadotropins and length of ovarian stimulation in women undergoing IVF: a systematic review and meta-analysis of randomized controlled trials. Arch Gynecol Obstet 2018;298(4):675684.Google Scholar
Zheng, X, Lin, D, Zhang, Y, et al. Inositol supplement improves clinical pregnancy rate in infertile women undergoing ovulation induction for ICSI or IVF-ET. Medicine (Baltimore) 2017;96(49):e8842.Google Scholar

References

Abdalla, HI, Ah-Moye, M, Brinsden, P, et al. The effect of the dose of human chorionic gonadotropin and the type of gonadotropin stimulation on oocyte recovery rates in an in vitro fertilization program. Fertil Steril 1987;48(6):958963.Google Scholar
Aboulghar, MA, Mansour, RT. Ovarian hyperstimulation syndrome: classifications and critical analysis of preventive measures. Hum Reprod Update 2003;9:275289.Google Scholar
Al-Inany, HG, Youssef, MA, Ayeleke, RO, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev 2016;4:CD001750.Google Scholar
Alvarez, C, Martí-Bonmatí, L, Novella-Maestre, E, et al. Dopamine agonist cabergoline reduces hemoconcentration and ascites in hyperstimulated women undergoing assisted reproduction. J Clin Endocrinol Metab 2007;92(8):29312937.Google Scholar
Anaya, Y, Mata, DA, Letourneau, J, et al. A novel oocyte maturation trigger using 1500 IU of human chorionic gonadotropin plus 450 IU of follicle-stimulating hormone may decrease ovarian hyperstimulation syndrome across all in vitro fertilization stimulation protocols [published correction appears in J Assist Reprod Genet 2017;35(2):309]. J Assist Reprod Genet 2018;35(2):297307.Google Scholar
Serour, GI, Aboulghar, MA, Mansour, R, et al. Complications of medically assisted conception in 3,500 cycles. Fertil Steril 1998;70:638642.Google Scholar
Mathur, RS, Akande, AV, Keay, SD, et al. Distinction between early and late ovarian hyperstimulation syndrome. Fertil Steril 2000;73:901907.Google Scholar
Papanikolaou, EG, Pozzobon, C, Kolibianakis, EM, et al. Incidence and prediction of ovarian hyperstimulation syndrome in women undergoing gonadotropin-releasing hormone antagonist in vitro fertilization cycles. Fertil Steril 2006;85:112120.Google Scholar
Rizk, B, Smitz, J. Ovarian hyperstimulation syndrome after superovulation for IVF and related procedures. Hum Reprod 1992;7:320327.Google Scholar
Rizk, B. Ovarian hyperstimulation syndrome. In: Studd, J, ed. Progress in Obstetrics and Gynecology, Vol. 11. Edinburgh: Churchill Livingstone; 1993:311349.Google Scholar
Rizk, B, Aboulghar, MA. Classification, pathophysiology and management of ovarian hyperstimulation syndrome. In: Brinsden, P, ed. A Textbook of In-vitro Fertilization and Assisted Reproduction, 2nd ed. Carnforth-Lancs, UK: The Parthenon Publishing Group; 1999:131155.Google Scholar
Golan, A, Weissman, A. Symposium: update on prediction and management of OHSS. A modern classification of OHSS. Reprod Biomed Online 2009;19(1):2832. doi: 10.1016/s1472-6483(10)60042-9.Google Scholar
Humaidan, P, Quartarolo, J, Papanikolaou, EG. Preventing ovarian hyperstimulation syndrome: guidance for the clinician. Fertil Steril 2010;94(2):389400.Google Scholar
Ferrero, H, García-Pascual, CM, Gómez, R, et al. Dopamine receptor 2 activation inhibits ovarian vascular endothelial growth factor secretion in vitro: implications for treatment of ovarian hyperstimulation syndrome with dopamine receptor 2 agonists. Fertil Steril 2014;101(5):14111418.Google Scholar
Nastri, CO, Ferriani, RA, Rocha, IA, Martins, WP. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet 2010;27:121128.Google Scholar
Geva, E, Jaffe, RB. Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertil Steril 2000;74(3):429438. doi: 10.1016/s0015-0282(00)00670-1.Google Scholar
Naredi, N, Talwar, P, Sandeep, K. VEGF antagonist for the prevention of ovarian hyperstimulation syndrome: current status. Med J Armed Forces India 2014;70(1):5863. doi: 10.1016/j.mjafi.2012.03.005.Google Scholar
Kaiser, UB. The pathogenesis of the ovarian hyperstimulation syndrome. N Engl J Med 2003;349:729732.Google Scholar
Aboulghar, MA, Mansour, RT, Serour, GI, El Helw, BA, Shaarawy, M. Elevated levels of interleukin-2, soluble interleukin-2 receptor alpha, interleukin-6, soluble interleukin-6 receptor and vascular endothelial growth factor in serum and ascitic fluid of patients with severe ovarian hyperstimulation syndrome. Eur J Obstet Gynecol Reprod Biol 1999;87(1):8185. doi: 10.1016/s0301-2115(99)00082-2.Google Scholar
Luke, B, Brown, MB, Morbeck, DE, et al. Factors associated with ovarian hyperstimulation syndrome (OHSS) and its effect on assisted reproductive technology (ART) treatment and outcome. Fertil Steril 2010;94(4):13991404. doi: 10.1016/j.fertnstert.2009.05.092.Google Scholar
Tarlatzi, TB, Venetis, CA, Devreker, F, Englert, Y, Delbaere, A. What is the best predictor of severe ovarian hyperstimulation syndrome in IVF? A cohort study. J Assist Reprod Genet 2017;34(10):13411351.Google Scholar
Iliodromiti, S, Anderson, RA, Nelson, SM. Technical and performance characteristics of anti-Müllerian hormone and antral follicle count as biomarkers of ovarian response. Hum Reprod Update 2015;21(6):698710.Google Scholar
Lee, TH, Liu, CH, Huang, CC, et al. Serum anti-mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod 2008;23:160167.Google Scholar
Kwan, I, Bhattacharya, S, McNeil, A, van Rumste, MM. Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI). Cochrane Database Syst Rev 2008;2:CD005289. doi: 10.1002/14651858.CD005289.pub2.Google Scholar
Kwan, I, Bhattacharya, S, Kang, A, Woolner, A. Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI). Cochrane Database Syst Rev 2014;2014(8):CD005289.Google Scholar
Nelson, SM. Prevention and management of ovarian hyperstimulation syndrome. Thromb Res 2017;151 Suppl 1:S61S64.Google Scholar
Papanikolaou, EG, Humaidan, P, Polyzos, NP, Tarlatzis, B. Identification of the high-risk patient for ovarian hyperstimulation syndrome. Semin Reprod Med 2010;28(6):458462.Google Scholar
Heijnen, EM, Eijkemans, MJ, De Klerk, C, et al. A mild treatment strategy for in-vitro fertilisation: a randomised non-inferiority trial. Lancet 2007;369(9563):743749.Google Scholar
Karimzadeh, MA, Ahmadi, S, Oskouian, H, Rahmani, E. Comparison of mild stimulation and conventional stimulation in ART outcome. Arch Gynecol Obstet 2010;281(4):741746.Google Scholar
Casano, S, Guidetti, D, Patriarca, A, et al. MILD ovarian stimulation with GnRH-antagonist vs. long protocol with low dose FSH for non-PCO high responders undergoing IVF: a prospective, randomized study including thawing cycles. J Assist Reprod Genet 2012;29(12):13431351.Google Scholar
Rinaldi, L, Lisi, F, Selman, H. Mild/minimal stimulation protocol for ovarian stimulation of patients at high risk of developing ovarian hyperstimulation syndrome. J Endocrinol Invest 2014;37(1):6570.Google Scholar
Onofriescu, A, Bors, A, Luca, A, et al. GnRH antagonist IVF protocol in PCOS. Curr Health Sci J 2013;39(1):2025.Google Scholar
Ozmen, B, Sükür, YE, Seval, MM, et al. Dual suppression with oral contraceptive pills in GnRH antagonist cycles for patients with polycystic ovary syndrome undergoing intracytoplasmic sperm injection. Eur J Obstet Gynecol Reprod Biol 2014;183:137140.Google Scholar
Xing, W, Lin, H, Li, Y, et al. Is the GnRH antagonist protocol effective at preventing OHSS for potentially high responders undergoing IVF/ICSI? PLoS One 2015; 10(10):e0140286.Google Scholar
Yu, R, Lin, J, Zhao, JZ, et al. Study on clinical effect on infertility women with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization-embryo transfer. Zhonghua Fu Chan Ke Za Zhi 2012;47(4):250254.Google Scholar
Das, M, Son, WY, Buckett, W, Tulandi, T, Holzer, H. In-vitro maturation versus IVF with GnRH antagonist for women with polycystic ovary syndrome: treatment outcome and rates of ovarian hyperstimulation syndrome. Reprod Biomed Online 2014;29(5):545551.Google Scholar
Walls, ML, Hunter, T, Ryan, JP, et al. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum Reprod 2015;30(1):8896.Google Scholar
Rizk, B, Aboulghar, M. Modern management of ovarian hyperstimulation syndrome. Hum Reprod 1991;6(8):10821087.Google Scholar
Sher, G, Zouves, C, Feinman, M, Maassarani, G.Prolonged coasting’: an effective method for preventing severe ovarian hyperstimulation syndrome in patients undergoing in-vitro fertilization. Hum Reprod 1995;10(12):31073109.Google Scholar
Kovács, P, Mátyás, S, Kaali, SG. Effect of coasting on cycle outcome during in vitro fertilization/intracytoplasmic sperm injection cycles in hyper-responders. Fertil Steril 2006;85(4):913917.Google Scholar
D’Angelo, A, Brown, J, Amso, NN. Coasting (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2011;6:CD002811.Google Scholar
Kosmas, IP, Zikopoulos, K, Georgiou, I, et al. Low-dose HCG may improve pregnancy rates and lower OHSS in antagonist cycles: a meta-analysis. Reprod Biomed Online 2009; 19(5):619630.Google Scholar
Tiboni, GM, Colangelo, EC, Ponzano, A. Reducing the trigger dose of recombinant hCG in high-responder patients attending an assisted reproductive technology program: an observational study. Drug Des Devel Ther 2016;10:16911694.Google Scholar
Gülekli, B, Göde, F, Sertkaya, Z, Işık, AZ. Gonadotropin-releasing hormone agonist triggering is effective, even at a low dose, for final oocyte maturation in ART cycles: case series. J Turk Ger Gynecol Assoc 2015;16(1):3540.Google Scholar
Casper, RF. Introduction: gonadotropin-releasing hormone agonist triggering of final follicular maturation for in vitro fertilization. Fertil Steril 2015;103(4):865866.Google Scholar
Youssef, MA, Van der Veen, F, Al-Inany, HG, et al. Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist-assisted reproductive technology. Cochrane Database Syst Rev 2014;10:CD008046.Google Scholar
Youssef, MA, van Wely, M, Hassan, MA, et al. Can dopamine agonists reduce the incidence and severity of OHSS in IVF/ICSI treatment cycles? A systematic review and meta-analysis. Hum Reprod Update 2010;16(5):459466.Google Scholar
Baumgarten, M, Polanski, L, Campbell, B, Raine-Fenning, N. Do dopamine agonists prevent or reduce the severity of ovarian hyperstimulation syndrome in women undergoing assisted reproduction? A systematic review and meta-analysis. Hum Fertil 2013;16(3):168174.Google Scholar
Kasum, M, Vrčić, H, Stanić, P, et al. Dopamine agonists in prevention of ovarian hyperstimulation syndrome. Gynecol Endocrinol 2014;30(12):845849.Google Scholar
Leitao, VM, Moroni, RM, Seko, LM, Nastri, CO, Martins, WP. Cabergoline for the prevention of ovarian hyperstimulation syndrome: systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2014;101(3):664675.Google Scholar
Gokmen, O, Ugur, M, Ekin, M, et al. Intravenous albumin versus hydroxyethyl starch for the prevention of ovarian hyperstimulation in an in vitro fertilization programme: a prospective randomized placebo controlled study. Eur J Obstet Gynecol Reprod Biol 2001;96(2):187192.Google Scholar
Youssef, MA, Mourad, S. Volume expanders for the prevention of ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2016;8:CD001302.Google Scholar
Naredi, N, Karunakaran, S. Calcium gluconate infusion is as effective as the vascular endothelial growth factor antagonist cabergoline for the prevention of ovarian hyperstimulation syndrome. J Hum Reprod Sci 2013;6(4):248252. doi: 10.4103/0974-1208.126293.Google Scholar
Boothroyd, C, Karia, S, Andreadis, N, et al.; Australasian CREI Consensus Expert Panel on Trial evidence (ACCEPT) group. Consensus statement on prevention and detection of ovarian hyperstimulation syndrome. Aust N Z J Obstet Gynaecol 2015;55(6):523534.Google Scholar
Borges, E Jr., Braga, DP, Setti, AS, et al. Strategies for the management of OHSS: results from freezing-all cycles. JBRA Assist Reprod 2016;20(1):812.Google Scholar
He, Q, Xu, J, Cui, S, Li, H, Zhang, C. Relationship between letrozole administration during the luteal phase after oocyte retrieval and the early-stage ovarian hyperstimulation syndrome occurrence.Zhonghua Fu Chan Ke Za Zhi 2014;49(12):909913.Google Scholar
Wang, YQ, Luo, J, Xu, WM, et al. Can steroidal ovarian suppression during the luteal phase after oocyte retrieval reduce the risk of severe OHSS? J Ovarian Res 2015;8:63.Google Scholar
Cheng, ZX, Kong, G, Zhang, CL, Zhao, YN. Letrozole versus gonadotropin-releasing hormone antagonist during luteal phase in the prevention of ovarian hyperstimulation syndrome: a randomized controlled trial. Zhonghua Fu Chan Ke Za Zhi 2020;55(1):914.Google Scholar
Kol, S, Homburg, R, Alsbjerg, B, Humaidan, P. The gonadotropin-releasing hormone antagonist protocol–the protocol of choice for the polycystic ovary syndrome patient undergoing controlled ovarian stimulation. Acta Obstet Gynecol Scand 2012;91(6):643647.Google Scholar
Toftager, M, Bogstad, J, Bryndorf, T, et al. Risk of severe ovarian hyperstimulation syndrome in GnRH antagonist versus GnRH agonist protocol: RCT including 1050 first IVF/ICSI cycles. Hum Reprod 2016;31(6):12531264.Google Scholar
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type Hum Reprod Update 2017;23(5):560579.Google Scholar
Verberg, MF, Macklon, NS, Nargund, G, et al. Mild ovarian stimulation for IVF. Hum Reprod Update 2009;15(1):1329.Google Scholar
Zegers-Hochschild, F, Adamson, GD, de Mouzon, J, et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod 2009;24(11):26832687.Google Scholar
Baart, EB, Martini, E, Eijkemans, MJ, et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod 2007;22(4):980988.Google Scholar
Nargund, G, Datta, AK, Fauser, B. Mild stimulation for in vitro fertilization. Fertil Steril 2017;108:558567.Google Scholar
Roque, M, Haahr, T, Geber, S, Esteves, SC, Humaidan, P. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update 2019;25(1):214.Google Scholar
Yang, ZY, Chian, RC. Development of in vitro maturation techniques for clinical applications. Fertil Steril 2017;108(4):577584.Google Scholar
Siristatidis, CS, Maheshwari, A, Vaidakis, D, Bhattacharya, S. In vitro maturation in subfertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database Syst Rev 2018;11(11):CD006606.Google Scholar
D’Angelo, A, Amso, NN, Hassan, R. Coasting (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2017;5:CD002811. doi: 10.1002/14651858.CD002811.pub4.Google Scholar
Humaidan, P, Bredkjær, HE, Bungum, L, et al. GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Huan Reprod 2005;20(5):12131220.Google Scholar
Pirard, C, Donnez, J, Loumaye, E. GnRH agonist as luteal phase support in assisted reproduction technique cycles: results of a pilot study. Hum Reprod 2006;21(7):18941900.Google Scholar
Kol, S. Luteolysis induced by a gonadotropin-releasing hormone agonist is the key to prevention of ovarian hyperstimulation syndrome. Fertil Steril 2004;81(1):15.Google Scholar
Simon, C, Cano, F, Valbuena, D, Remohi, J, Pellicer, A. Clinical evidence for a detrimental effect on uterine receptivity of high serum estradiol concentrations in high and normal responders. Hum Reprod 1995;10:24322437.Google Scholar
Haahr, T, Roque, M, Esteves, SC, Humaidan, P. GnRH agonist trigger and LH activity luteal phase support versus hCG trigger and conventional luteal phase support in fresh embryo transfer IVF/ICSI cycles-a systematic PRISMA review and meta-analysis. Front Endocrinol (Lausanne) 2017;8:116.Google Scholar
Castillo, JC, Haahr, T, Martínez-Moya, M, Humaidan, P. Gonadotropin-releasing hormone agonist for ovulation trigger – OHSS prevention and use of modified luteal phase support for fresh embryo transfer. Ups J Med Sci 2020;125(2):131137.Google Scholar
Martínez, F, Mancini, F, Solé, M, et al. Antagonist rescue of agonist IVF cycle at risk of OHSS: a case series. Gynecol Endocrinol 2014;30:145148.Google Scholar
Tso, LO, Costello, MF, Albuquerque, LE, Andriolo, RB, Macedo, CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev 2014;11:CD006105.Google Scholar
Mourad, S, Brown, J, Farquhar, C. Interventions for the prevention of OHSS in ART cycles: an overview of Cochrane reviews. Cochrane Database Syst Rev 2017;1: CD012103. doi: 10.1002/14651858.CD012103.pub2.Google Scholar
Jacob, SL, Brewer, C, Tang, T, et al. A short course of metformin does not reduce OHSS in a GnRH antagonist cycle for women with PCOS undergoing IVF: a randomised placebo-controlled trial. Hum Reprod 2016;31(12):27562764.Google Scholar
Eftekhar, M, Deghani Firoozabadi, R, Khani, P, Ziaei Bideh, E, Forghani, H. Effect of laparoscopic ovarian drilling on outcomes of in vitro fertilization in clomiphene-resistant women with polycystic ovary syndrome. Int J Fertil Steril 2016;10(1):4247. doi: 10.22074/ijfs.2016.4767.Google Scholar
Seyam, E, Hefzy, E. Laparoscopic ovarian drilling versus GnRH antagonist combined with cabergoline as a prophylaxis against the re-development of ovarian hyperstimulation syndrome. Gynecol Endocrinol 2018;34(7):616622. doi: 10.1080/09513590.2018.1425989.Google Scholar
Ramzy, A, Al-Inany, H, Aboulfoutouh, I. Ultrasonographic guided ovarian stroma hydrocoagulation for ovarian stimulation in polycystic ovary syndrome. Acta Obstet Gynecol Scand 2001;80:10461050.Google Scholar
McNatty, KP, Smith, DM, Makris, A, et al. The intraovarian sites of androgen and estrogen formation in women with normal and hyperandrogenic ovaries as judged by in vitro experiments. J Clin Endocrinol Metab 1980;50(4):755763.Google Scholar
Badawy, A, Khiary, M, Ragab, A, Hassan, M, Sherief, L. Ultrasound-guided transvaginal ovarian needle drilling (UTND) for treatment of polycystic ovary syndrome: a randomized controlled trial. Fertil Steril 2009;91(4):11641167.Google Scholar
Zhang, J, Tang, L, Kong, L, et al. Ultrasound-guided transvaginal ovarian needle drilling for clomiphene-resistant polycystic ovarian syndrome in subfertile women [published online ahead of print, 2019 Jul 31]. Cochrane Database Syst Rev 2019;7(7):CD008583.Google Scholar
Nargund, G, Hutchison, L, Scaramuzzi, R, Campbell, S. Low-dose HCG is useful in preventing OHSS in high-risk women without adversely affecting the outcome of IVF cycles. Reprod Biomed Online 2007;14(6):682685. doi: 10.1016/s1472-6483(10)60668-2.Google Scholar
Chen, X, Chen, S, He, Y, et al. Minimum dose of hCG to trigger final oocyte maturation and prevent OHSS in a long GnRHa protocol. J Huazhong Univ Sci Technol 2013;33:133136.Google Scholar
Tsoumpou, I, Muglu, J, Gelbaya, TA, Nardo, LG. Symposium: update on prediction and management of OHSS. Optimal dose of HCG for final oocyte maturation in IVF cycles: absence of evidence? Reprod Biomed Online 2009;19(1):5258.Google Scholar
Tapanainen, JS, Lapolt, PS, Perlas, E, Hsueh, AJ. Induction of ovarian follicle luteinization by recombinant follicle-stimulating hormone. Endocrinology 1993;133(6):28752880.Google Scholar
Zelinski-Wooten, MB, Hutchison, JS, Hess, DL, WoIf, DP, Stouffer, RL. A bolus of recombinant human follicle stimulating hormone at midcycle induces periovulatory events following multiple follicular development in macaques. Hum Reprod 1998;13(3):554560.Google Scholar
Busso, CE, Garcia-Velasco, JA, Simon, C, Pellicer, A. Prevention of OHSS: current strategies and new insights. Middle East Fertil Soc J 2010;15(4):223230.Google Scholar
Knoepfelmacher, M, Danilovic, DL, Rosa Nasser, RH, Mendonca, BB. Effectiveness of treating ovarian hyperstimulation syndrome with cabergoline in two patients with gonadotropin‐producing pituitary adenomas. Fertil Steril 2006;86(3):719.e15–719.e18.Google Scholar
Tang, H, Mourad, S, Zhai, SD, Hart, RJ. Dopamine agonists for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2016;11:CD008605. doi: 10.1002/14651858.CD008605.pub3.Google Scholar
Kissler, S, Neidhardt, B, Siebzehnrübl, E, et al. The detrimental role of colloidal volume substitutes in severe ovarian hyperstimulation syndrome: a case report. Eur J Obstet Gynecol Reprod Biol 2001;99(1):131134.Google Scholar
Morris, RS, Wong, IL, Kirkman, E, Gentschein, E, Paulson, RJ. Inhibition of ovarian-derived prorenin to angiotensin cascade in the treatmentof ovarian hyperstimulation syndrome. Hum Reprod 1995;10:13551358.Google Scholar
Gurgan, T, Demirol, A, Guven, S, et al. Intravenous calcium infusion as a novel preventive therapy of ovarian hyperstimulation syndrome for patients with polycystic ovarian syndrome. Fertil Steril 2011;96(1):5357.Google Scholar
El-Khayat, W, Elsadek, M. Calcium infusion for the prevention of ovarian hyperstimulation syndrome: a double-blind randomized controlled trial. Fertil Steril 2015;103(1):101105. doi: 10.1016/j.fertnstert.2014.09.046.Google Scholar
Naredi, N, Singh, SK, Lele, P, Nagraj, N. Severe ovarian hyperstimulation syndrome: can we eliminate it through a multipronged approach? Med J Armed Forces India 2018;74(1):4450. doi: 10.1016/j.mjafi.2017.04.006.Google Scholar
Davenport, MJ, Vollenhoven, B, Talmor, AJ. Gonadotropin-releasing hormone-agonist triggering and a freeze-all approach: the final step in eliminating ovarian hyperstimulation syndrome? Obstet Gynecol Surv 2017;72(5):296308.Google Scholar
Atkinson, P, Koch, J, Ledger, WL. GnRH agonist trigger and a freeze-all strategy to prevent ovarian hyperstimulation syndrome: a retrospective study of OHSS risk and pregnancy rates. Aust N Z J Obstet Gynaecol 2014;54(6):581585.Google Scholar
Shin, JJ, Jeong, Y, Nho, E, Jee, BC. Clinical outcomes of frozen embryo transfer cycles after freeze-all policy to prevent ovarian hyperstimulation syndrome. Obstet Gynecol Sci 2018;61(4):497504.Google Scholar
D’Angelo, A, Amso, NN. Embryo freezing for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2007;3:CD002806. doi: 10.1002/14651858.CD002806.pub2.Google Scholar
Chen, ZJ, Shi, Y, Sun, Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med 2016;375(6):523533.Google Scholar
Chen, Y, Yang, T, Hao, C, Zhao, J. A retrospective study of letrozole treatment prior to human chorionic gonadotropin in women with polycystic ovary syndrome undergoing in vitro fertilization at risk of ovarian hyperstimulation syndrome. Med Sci Monit 2018;24:42484253.Google Scholar
Tshzmachyan, R, Hambartsoumian, E. The role of letrozole (LE) in controlled ovarian stimulation (COS) in patients at high risk to develop ovarian hyper stimulation syndrome (OHSS). A prospective randomized controlled pilot study.J Gynecol Obstet Hum Reprod 2020;49(2):101643. doi: 10.1016/j.jogoh.2019.101643.Google Scholar
Mai, Q, Hu, X, Yang, G, et al. Effect of letrozole on moderate and severe early-onset ovarian hyperstimulation syndrome in high-risk women: a prospective randomized trial. Am J Obstet Gynecol 2017;216(1):42.e1–42.e10.Google Scholar
Zeng, C, Shang, J, Jin, AM, et al. The effect of luteal GnRH antagonist on moderate and severe early ovarian hyperstimulation syndrome during in vitro fertilization treatment: a prospective cohort study. Arch Gynecol Obstet 2019;300(1):223233.Google Scholar
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Pregnancy and neonatal outcomes following luteal GnRH antagonist administration in patients with severe early OHSS. Hum Reprod 2013;28(7):19291942. doi: 10.1093/humrep/det114.Google Scholar
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Serum vascular endothelial growth factor levels following luteal gonadotrophin-releasing hormone antagonist administration in women with severe early ovarian hyperstimulation syndrome. BJOG 2014;121(7):848855.Google Scholar
Rizk, B, Rizk, CB, Nawar, MG, Garcia-Velasco, JA, Sallam, HN. Ultrasonography in the prediction and management of ovarian hyperstimulation syndrome In: Rizk, B, ed. Ultrasonography in Reproductive Medicine and Infertility. Cambridge, UK : Cambridge University Press; 2010:299312.Google Scholar
Salmassi, A, Mettler, L, Hedderich, J, et al. Cut-off levels of anti-Mullerian hormone for the prediction of ovarian response, in vitro fertilization outcome and ovarian hyperstimulation syndrome. Int J Fertil Steril 2015;9(2):157167.Google Scholar
Vembu, R, Reddy, NS. Serum AMH level to predict the hyper response in women with PCOS and non-PCOS undergoing controlled ovarian stimulation in ART. J Hum Reprod Sci 2017;10(2):9194. doi: 10.4103/jhrs.JHRS_15_16.Google Scholar
Steward, RG, Lan, L, Shah, AA, et al. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: an analysis of 256,381 in vitro fertilization cycles. Fertil Steril 2014;101(4):967973.Google Scholar

References

Ferrero, H, García-Pascual, CM, Gómez, R, et al. Dopamine receptor 2 activation inhibits ovarian vascular endothelial growth factor secretion in vitro: implications for treatment of ovarian hyperstimulation syndrome with dopamine receptor 2 agonists. Fertil Steril 2014;101(5):14111418.Google Scholar
Nastri, CO, Ferriani, RA, Rocha, IA, Martins, WP. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet 2010;27:121128.Google Scholar
Aboulghar, MA, Mansour, RT. Ovarian hyperstimulation syndrome: classifications and critical analysis of preventive measures. Hum Reprod Update 2003;9:275289.Google Scholar
Mathur, RS, Akande, AV, Keay, SD, Hunt, LP, Jenkins, JM. Distinction between early and late ovarian hyperstimulation syndrome. Fertil Steril 2000;73(5):901907.Google Scholar
Gebril, A, Hamoda, H, Mathur, R. Outpatient management of severe ovarian hyperstimulation syndrome: a systematic review and a review of existing guidelines. Hum Fertil (Camb) 2018;21(2):98105.Google Scholar
Smith, LP, Hacker, MR, Alper, MM. Patients with severe ovarian hyperstimulation syndrome can be managed safely with aggressive outpatient transvaginal paracentesis. Fertil Steril 2009;92(6):19531959.Google Scholar
Rizk, B, Aboulghar, MA. Classification, pathophysiology and management of ovarian hyperstimulation syndrome. In: Brinsden, P, ed. A Textbook of In-vitro Fertilization and Assisted Reproduction, 2nd ed. Carnforth-Lancs, UK. The Parthenon Publishing Group; 1999:131155.Google Scholar
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Outpatient management of severe early OHSS by administration of GnRH antagonist in the luteal phase: an observational cohort study. Reprod Biol Endocrinol 2012;10:69.Google Scholar
Lainas, GT, Kolibianakis, EM, Sfontouris, IA, et al. Pregnancy and neonatal outcomes following luteal GnRH antagonist administration in patients with severe early OHSS. Hum Reprod 2013;28(7):19291942.Google Scholar
Deng, L, Li, XL, Ye, DS, et al. A second dose of GnRHa in combination with luteal GnRH antagonist may eliminate ovarian hyperstimulation syndrome in women with ≥30 follicles measuring ≥11 mm in diameter on trigger day and/or pre-trigger peak estradiol exceeding 10 000 pg/mL. Curr Med Sci 2019;39(2):278284.Google Scholar
Abramov, Y, Fatum, M, Abrahomov, D, et al. Hydroxyethyl starch versus human albumin for the treatment of severe ovarian hyperstimulation syndrome: a preliminary report. Fertil Steril 2001;75:12281230.Google Scholar
Gamzu, R, Almog, B, Levin, Y, et al. Efficacy of hydroxyethyl starch and Haemaccel for the treatment of severe ovarian hyperstimulation syndrome. Fertil Steril 2002;77:13021303.Google Scholar
Minami, T, Mph, , Yamana, H, et al. Artificial colloids versus human albumin for the treatment of ovarian hyperstimulation syndrome: a retrospective cohort study. Int J Reprod Biomed 2019;17(10):709716.Google Scholar
Rizk, B. Ovarian Hyperstimulation Syndrome: Epidemiology, Pathophysiology, Prevention and Management. Cambridge, UK: Cambridge University Press; 2006.Google Scholar
Fabregues Tassies, D, Reverter, JC, Reverter, JC, et al. Prevalence of thrombophilia in women with severe ovarian hyperstimulation syndrome and cost-effectiveness of screening. Fertil Steril 2004;81:989995.Google Scholar
Mikhail, S, Rizk, RMB, Nawar, MG, Rizk, CB. Thrombophilia and implantation failure. In: Rizk, B, Garcia-Velasco, JA, Sallam, HN, Makrigiannakis, A, eds. Infertility and Assisted Reproduction. Cambridge, UK: Cambridge University Press; 2008:407415.Google Scholar
Serour, GI, Aboulghar, MA, Mansour, R, et al. Complications of medically assisted conception in 3,500 cycles. Fertil Steril 1998;70:638642.Google Scholar
Lee, TH, Liu, CH, Huang, CC, et al. Serum anti-mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod 2008;23:160167.Google Scholar
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update 2017;23(5):560579.Google Scholar
Çağlar Aytaç, P, Kalaycı, H, Yetkinel, S, et al. Effect of pigtail catheter application on obstetric outcomes in in vitro fertilization/intracytoplasmic sperm injection pregnancies following hyperstimulation syndrome. Turk J Obstet Gynecol 2017;14(2):9499.Google Scholar
Abuzeid, M, Warda, H, Joseph, S, et al. Outpatient management of severe ovarian hyperstimulation syndrome (OHSS) with placement of pigtail catheter. Facts Views Vis Obgyn 2014;6(1):3137.Google Scholar
Ozgun, MT, Batukan, C, Oner, G, et al. Removal of ascites up to 7.5 liters on one occasion and 45 liters in total may be safe in patients with severe ovarian hyperstimulation syndrome. Gynecol Endocrinol 2008;24(11):656658.Google Scholar
Agarwal, N, Ghosh, S, Bathwal, S, Chakravarty, B. Large-volume paracentesis, up to 27 L, with adjuvant vaginal cabergoline in the case of severe ovarian hyperstimulation syndrome with successful pregnancy outcome: a case report. J Hum Reprod Sci 2017;10(3):235237.Google Scholar
Raziel, A, Friedler, S, Schachter, M, et al. Transvaginal drainage of ascites as an alternative to abdominal paracentesis in patients with severe ovarian hyperstimulation syndrome, obesity, and generalized edema. Fertil Steril 1998;69(4):780783.Google Scholar
Brinsden, PR, Wada, I, Tan, SL, et al. Diagnosis, prevention and management of ovarian hyperstimulation syndrome. Br J Obstet Gynecol 1995;102:767772.Google Scholar
Practice Committee of the American Society for Reproductive Medicine. Electronic address: ; Practice Committee of the American Society for Reproductive Medicine. Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline. Fertil Steril 2016;106(7):16341647.Google Scholar
Tan, BK, Mathur, R. Management of ovarian hyperstimulation syndrome. Produced on behalf of the BFS Policy and Practice Committee. Hum Fertil (Camb) 2013;16(3):151159.Google Scholar
Busso, CE. Prevention of OHSS – dopamine agonists. Reprod Biomed Online 2009;19(1):4351.Google Scholar
Spitzer, D, Wirleitner, B, Steiner, H, Zech, NH. Adnexal torsion in pregnancy after assisted reproduction – case study and review of the literature. Geburtshilfe Frauenheilkd 2012;72(8):716720.Google Scholar
Tsai, HC, Kuo, TN, Chung, MT, et al. Acute abdomen in early pregnancy due to ovarian torsion following successful in vitro fertilization treatment. Taiwan J Obstet Gynecol 2015;54(4):438441.Google Scholar
Busso, C, Fernandez-Sanchez, M, Garcia-Velasco, JA, et al. The non-ergot derived dopamine agonist quinagolide in prevention of early ovarian hyperstimulation syndrome in IVF patients: a randomized, double-blind, placebo-controlled trial. Hum Reprod 2010;25(4):9951004. doi: 10.1093/humrep/deq005.Google Scholar
Kanayama, S, Kaniwa, H, Tomimoto, M, et al. Laparoscopic detorsion of the ovary in ovarian hyperstimulation syndrome during the sixth week of gestation: a case report and review. Int J Surg Case Rep 2019;59:5053.Google Scholar
Orvieto, R, Vanni, VS. Ovarian hyperstimulation syndrome following GnRH agonist trigger-think ectopic. J Assist Reprod Genet 2017;34(9):11611165. doi: 10.1007/s10815-017-0960-0.Google Scholar
Weiss, A, Beck-Fruchter, R, Golan, J, et al. Ectopic pregnancy risk factors for ART patients undergoing the GnRH antagonist protocol: a retrospective study. Reprod Biol Endocrinol 2016;14:12.Google Scholar
Chang, HJ, Suh, CS. Ectopic pregnancy after assisted reproductive technology: what are the risk factors? Curr Opin Obstet Gynecol 2010;22(3):202207.Google Scholar
Navot, D, Bergh, PA, Laufer, N. Ovarian hyperstimulation syndrome in novel reproductive technologies: prevention and treatment. Fertil Steril 1992;58:249261.Google Scholar
Fiedler, K, Ezcurra, D. Predicting and preventing ovarian hyperstimulation syndrome (OHSS): the need for individualized not standardized treatment. Reprod Biol Endocrinol 2012;10:32.Google Scholar

References

Nelson, SM, Pastuszek, E, Kloss, G, et al. Two new automated, compared with two enzyme-linked immunosorbent, antimüllerian hormone assays. Fertil Steril 2015;104(4):10161021.Google Scholar
Iliodromiti, S, Salje, B, Dewailly, D, et al. Non-equivalence of anti-Müllerian hormone automated assays – clinical implications for use as a companion diagnostic for individualised gonadotrophin dosing. Hum Reprod 2017;32(8):17101715.Google Scholar
Broekmans, FJ, de Ziegler, D, Howles, CM, et al. The antral follicle count: practical recommendations for better standardization. Fert Steril 2010;94(3):10441051.Google Scholar
Haadsma, ML, Bukman, A, Groen, H, et al. The number of small antral follicles (2–6 mm) determines the outcome of endocrine ovarian reserve tests in a subfertile population. Hum Reprod 2007;22(7):19251931.Google Scholar
Bosch, E, Labarta, E, Pellicer, A. Does cumulative live birth plateau beyond a certain ovarian response? Fertil Steril 2017;108(6):943.Google Scholar
Drakopoulos, P, Blockeel, C, Stoop, D, et al. Conventional ovarian stimulation and single embryo transfer for IVF/ICSI. How many oocytes do we need to maximize cumulative live birth rates after utilization of all fresh and frozen embryos? Hum Reprod 2016;31(2):370376.Google Scholar
Sunkara, SK, Rittenberg, V, Raine-Fenning, N, et al. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod 2011;26(7):17681774.Google Scholar
Steward, RG, Lan, L, Shah, AA, et al. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: an analysis of 256,381 in vitro fertilization cycles. Fertil Steril 2014;101(4):967973.Google Scholar
Baker, VL, Brown, MB, Luke, B, Conrad, KP. Association of number of retrieved oocytes with live birth rate and birth weight: an analysis of 231,815 cycles of in vitro fertilization. Fertil Steril 2015;103(4):931938.Google Scholar
Briggs, R, Kovacs, G, MacLachlan, V, Motteram, C, Baker, HG. Can you ever collect too many oocytes? Hum Reprod 2014;30(1):8187.Google Scholar
Arce, JC, Andersen, AN, Fernández-Sánchez, M, et al. Ovarian response to recombinant human follicle-stimulating hormone: a randomized, antimüllerian hormone–stratified, dose–response trial in women undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril 2014;102(6):16331640.Google Scholar
Kolibianakis, EM, Griesinger, G, Venetis, CA. GnRH antagonists vs. long GnRH agonists in IVF: significant flaws in a meta-analysis lead to invalid conclusions. Hum Reprod Update 2017;24(2):242243.Google Scholar
Kolibianakis, EM, Venetis, CA, Kalogeropoulou, L, Papanikolaou, E, Tarlatzis, BC. Fixed versus flexible gonadotropin-releasing hormone antagonist administration in in vitro fertilization: a randomized controlled trial. Fertil Steril 2011;95:558562.Google Scholar
Al-Inany, HG, Youssef, MA, Ayeleke, RO, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev 2016;4:CD001750.Google Scholar
Xiao, JS, Su, CM, Zeng, XT. Comparisons of GnRH antagonist versus GnRH agonist protocol in supposed normal ovarian responders undergoing IVF: a systematic review and meta-analysis. PLoS One 2014;9:e106854.Google Scholar
Lambalk, CB, Banga, FR, Huirne, JA, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update 2017;23:560579.Google Scholar
Mol, BW, Bossuyt, PM, Sunkara, SK, et al. Personalized ovarian stimulation for assisted reproductive technology: study design considerations to move from hype to added value for patients. Fertil Steril 2018;109(6):968979.Google Scholar
Devroey, P, Tournaye, H, Van Steirteghem, A, Hendrix, P, Out, HJ. The use of a 100 IU starting dose of recombinant follicle stimulating hormone (Puregon) in in-vitro fertilization. Hum Reprod 1998;13:565566.Google Scholar
Out, HJ, Lindenberg, S, Mikkelsen, AL, et al. A prospective, randomized, double-blind clinical trial to study the efficacy and efficiency of a fixed dose of recombinant follicle stimulating hormone (Puregon) in women undergoing ovarian stimulation. Hum Reprod 1999;14:622627.Google Scholar
Out, HJ, Braat, DD, Lintsen, BM, et al. Increasing the daily dose of recombinant follicle stimulating hormone (Puregon) does not compensate for the age-related decline in retrievable oocytes after ovarian stimulation. Hum Reprod 2000;15:2935.Google Scholar
Out, HJ, David, I, Ron-El, R, et al. A randomized, double blind clinical trial using fixed daily doses of 100 or 200 IU of recombinant FSH in ICSI cycles. Hum Reprod 2001;16:11041109.Google Scholar
Sterrenburg, MD, Veltman-Verhulst, SM, Eijkemans, MJ, et al. Clinical outcomes in relation to the daily dose of recombinant follicle-stimulating hormone for ovarian stimulation in in vitro fertilization in presumed normal responders younger than 39 years: a meta-analysis. Hum Reprod Update 2011;17:184196.Google Scholar
Van der Meer, M, Hompes, PG, Scheele, F, et al. Follicle stimulating hormone (FSH) dynamics of low dose step-up ovulation induction with FSH in patients with polycystic ovary syndrome. Hum Reprod 1994;9:16121617.Google Scholar
Popovic-Todorovic, B, Loft, A, Lindhard, A, et al. A prospective study of predictive factors of ovarian response in ‘standard’ IVF/ICSI patients treated with recombinant FSH. A suggestion for a recombinant FSH dosage normogram. Hum Reprod 2003;18:781787.CrossRefGoogle ScholarPubMed
Howles, CM, Saunders, H, Alam, V, Engrand, P; FSH Treatment Guidelines Clinical Panel. Predictive factors and a corresponding treatment algorithm for controlled ovarian stimulation in patients treated with recombinant human follicle stimulating hormone (follitropin alfa) during assisted reproduction technology (ART) procedures. An analysis of 1378 patients. Curr Med Res Opin 2006;22:907918.Google Scholar
Popovic-Todorovic, B, Loft, A, Ejdrup Bredkjæer, H, et al. A prospective randomized clinical trial comparing an individual dose of recombinant FSH based on predictive factors versus a ‘standard’ dose of 150 IU/day in ‘standard’ patients undergoing IVF/ICSI treatment. Hum Reprod 2003;18:22752282.Google Scholar
Olivennes, F, Howles, CM, Borini, A, et al. Individualizing FSH dose for assisted reproduction using a novel algorithm: the CONSORT study. Reprod Biomed Online 2009;18:195204.Google Scholar
Broekmans, FJ, Kwee, J, Hendriks, DJ, Mol, BW, Lambalk, CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update 2006;12:685718.Google Scholar
Broer, SL, van Disseldorp, J, Broeze, KA, et al. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod Update 2013;19:2636.Google Scholar
Aflatoonian, A, Oskouian, H, Ahmadi, S, Oskouian, L. Prediction of high ovarian response to controlled ovarian hyperstimulation: anti-Mullerian hormone versus small antral follicle count (2-6 mm). J Assist Reprod Genet 2009;26:319325.Google Scholar
Magnusson, A, Kallen, K, Thurin-Kjellberg, A, Bergh, C. The number of oocytes retrieved during IVF: a balance between efficacy and safety. Hum Reprod 2018;33:5864.Google Scholar
Friis Petersen, J, Løkkegaard, E, Andersen, LF, et al. A randomized controlled trial of AMH-based individualized FSH dosing in a GnRH antagonist protocol for IVF. Hum Reprod Open 2019;2019(1):hoz003.Google Scholar
Nyboe Andersen, A, Nelson, SM, Fauser, BC, et al. Individualized versus conventional ovarian stimulation for in vitro fertilization: a multicenter, randomized, controlled, assessor blinded, phase three non-inferiority trial. Fertil Steril 2017;107:396.e4.Google Scholar
Lensen, SF, Wilkinson, J, Leijdekkers, JA, et al. Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilization plus intracytoplasmic sperm injection (IVF/ICSI). Cochrane Database Syst Rev 2018;2:CD012693.Google Scholar
Lan, VT, Linh, NK, Tuong, HM, Wong, PC, Howles, CM. Anti-mullerian hormone versus antral follicle count for defining the starting dose of FSH. Reprod Biomed Online 2013;27:390399.Google Scholar
Van Tilborg, TC, Torrance, HL, Oudshoorn, SC, et al. Individualized versus standard FSH dosing in women starting IVF/ICSI: an RCT. Part 1: The predicted poor responder. Hum Reprod 2017;32:24962505.Google Scholar
Youssef, MA, Van Wely, M, Al-Inany, H, et al. A mild ovarian stimulation strategy in women with poor ovarian reserve undergoing IVF: a multicenter randomized non-inferiority trial. Hum Reprod 2016;32(1):112118.Google ScholarPubMed
Oudendijk, JF, Yarde, F, Eijkemans, MJ, Broekmans, FJ, Broer, SL. The poor responder in IVF: is the prognosis always poor? A systematic review. Hum Reprod Update 2012;18:111.Google Scholar
Hamdine, O, Eijkemans, MJC, Lentjes, EGW, et al. Antimullerian hormone: prediction of cumulative live birth in gonadotropin-releasing hormone antagonist treatment for in vitro fertilization. Fertil Steril 2015;104:898.e2.CrossRefGoogle ScholarPubMed
Esteves, SC, Roque, M, Bedoschi, GM, et al. Defining low prognosis patients undergoing assisted reproductive technology: POSEIDON criteria–the why. Front Endocrinol (Lausanne) 2018;9:461.Google Scholar
Mochtar, MH, Van der Veen, F, Ziech, M, van Wely, M, Musters, A. Recombinant luteinizing hormone (rLH) for controlled ovarian hyperstimulation in assisted reproductive cycles. Cochrane Database Syst Rev 2007;2:CD005070.Google Scholar
Lahoud, R, Ryan, J, Illingworth, P, Quinn, F, Costello, M. Recombinant LH supplementation in patients with a relative reduction in LH levels during IVF/ICSI cycles: a prospective randomized controlled trial. Eur J Obstet Gynecol Reprod Biol 2017;210:300305.Google Scholar
Humaidan, P, Chin, W, Rogoff, D, et al. Efficacy and safety of follitropin alfa/lutropin alfa in ART: a randomized controlled trial in poor ovarian responders. Hum Reprod 2017;32:544555.Google Scholar
Griesinger, G, Boostanfar, R, Gordon, K, et al. Corifollitropin alfa versus recombinant follicle-stimulating hormone: an individual patient data meta-analysis. Reprod Biomed Online 2016;33:5660.CrossRefGoogle ScholarPubMed

References

Temkin, O. Soranus’ Gynaecology. Baltimore: John Hopkins University Press; 1956:xlix, 258 pp.Google Scholar
Herting, AT, Rock, J, Adams, EC. A description of 34 human ova within the first 17 days of development. Dev Dyn 1956;98:435493.Google Scholar
Navot, D, Scott, RT, Droesch, K, et al. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril 1991;55(1):114118. doi:10.1016/s0015-0282(16)54069-2.Google Scholar
Harper, MJ. The implantation window. Baillieres Clin Obstet Gynaecol 1992;6(2):351371.Google Scholar
Wilcox, AJ, Baird, DD, Weinberg, CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 1999;340(23):17961799. doi:10.1056/nejm199906103402304.Google Scholar
Grasso, A, Balaguer, N, Vilella, F. Receptividad endometrial: expresión génica y otros biomarcadores. In:García-Velasco, JA, ed. Cuadernos de Medicina Reproductiva, Vol. 23, No. 3. Edita Anarr. Nuevo Siglo,S.L.; 2017:4557.Google Scholar
Miravet-Valenciano, JA, Balaguer, N, Vilella, F, Simon, C. Molecular diagnosis of endometrial receptivity. In: Simón, C, Giudice, L, eds. The Endometrial Factor, A Reproductive Precision Medicine Approach. Boca Raton: Taylor & Francis Group; 2017:3649.CrossRefGoogle Scholar
Ruiz-Alonso, M, Blesa, D, Díaz-Gimeno, P, et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril 2013;100(3):818–24.Google Scholar
Domínguez, F, Loro, F, Simón, C. Funcionalidad del endometrio. In: El Endometrio Humano: Desde la investigación a la clínica. Madrid: Editorial Panamericana; 2009:1937.Google Scholar
Gómez, E, Marín, C, Ruiz-Alonso, M, Miravet-Valenciano, JA, Simón, C. Papel del test ERA en el fallo repetido de la implantación. In: Nadal, J, ed. Banco de óvulos. Madrid: Editorial Panamericana; 2017:6777.Google Scholar
Rarani, FZ, Borhani, F, Rashidi, B. Endometrial pinopode biomarkers: molecules and microRNAs. Cell Physiol 2018;233(12):91459158.CrossRefGoogle ScholarPubMed
Lessey, BA, Castlebaum, AJ, Sawin, SW, et al. Abberant integrin expression in the endometrium of women with endometriosis. J Clin Endocrinol Metab 1994;79:643649.Google Scholar
Lessey, BA, Castelbaum, AJ, Sawin, SW, Sun, JJF. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril 1995;63(3):535542.Google Scholar
Kliman, H, Honig, S, Walls, D, et al. Optimization of endometrial preparation results in a normal endometrial function test (EFT) and good reproductive outcome in donor ovum recipients. J Assist Reprod Genet 2006;23(7–8):299303.Google Scholar
Miravet-Valenciano, J, Ruiz-Alonso, M, Simón, C. Modern evaluation of endometrial receptivity. In: Stadtmauer, A, Tur-Kaspa, I, eds. Ultrasound Imaging in Reproductive Medicine: Advances in Infertility Work-up, Treatment and ART, 2nd ed. Cham: Springer; 2019:357368.Google Scholar
Domınguez, F, Garrido-Gómez, T, Lopez, JA, et al. Proteomic analysis of the human receptive versus non-receptive endometrium using differential in-gel electrophoresis and MALDI-MS unveils stathmin 1 and annexin A2 as differentially regulated. Hum Reprod 2009;24:26072617.Google Scholar
Vilella, F, Ramirez, L, Berlanga, O, et al. PGE2 and PGF2 concentrations in human endometrial fluid as biomarkers for embryonic implantation. J Clin Endocrinol Metab 2013;98(10):41234132.Google Scholar
Díaz-Gimeno, P, Horcajadas, JA, Martínez-Conejero, JA, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril 2011;95(1):50–60, 60.e1–60.e15.Google Scholar
Blesa, D, Ruiz-Alonso, M, Simón, C. Clinical management of endometrial receptivity. Semin Reprod Med 2014;32(5):410413.Google Scholar
Garrido-Gómez, T, Ruiz-Alonso, M, Blesa, D, et al. Profiling the gene signature of endometrial receptivity: clinical results. Fertil Steril 2010;99(4):10781085.Google Scholar
Díaz-Gimeno, P, Ruíz-Alonso, M, Blesa, D, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril 2013;99:508517.Google Scholar
Comstock, IA, Diaz-Gimeno, P, Cabanillas, S, et al. Does an increased body mass index affect endometrial gene expression patterns in infertile patients? A functional genomic analysis. Fertil Steril 2017;107(3):740748.Google Scholar
Miravet-Valenciano, J, Ruiz-Alonso, M, Simón, C. The transcriptomics of the human endometrium and embryo implantation. In: Leung, PCK, Qiao, J, eds. Human Reproductive and Prenatal Genetics. London: Academic Press; 2018:271291.Google Scholar
Garcia-Velasco, JA, Fassbender, A, Ruiz-Alonso, M, et al. Is endometrial receptivity transcriptomics affected in women with endometriosis? A pilot study. Reprod Biomed Online 2015;31(5):647654.CrossRefGoogle ScholarPubMed
Franasiak, JM, Werner, MD, Juneau, CR, et al. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assist Reprod Genet 2016;33:129136.Google Scholar
Moreno, I, Codoñer, FM, Vilella, F, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 2016;215(6):684703.Google Scholar

References

Croxatto, HB, Diaz, S, Fuentealba, B, et al. Studies on the duration of egg transport in the human oviduct. I. The time interval between ovulation and egg recovery from the uterus in normal women. Fertil Steril 1972;23(7):447458. doi: 10.1016/s0015-0282(16)39069-0.Google Scholar
Enders, AC, Schlafke, S. Cytological aspects of trophoblast-uterine interaction in early implantation. Am J Anat 1969;125(1):129. doi: 10.1002/aja.1001250102.Google Scholar
Cross, JC, Werb, Z, Fisher, SJ. Implantation and the placenta: key pieces of the development puzzle. Science 1994;266(5190):15081518. doi: 10.1126/science.7985020.Google Scholar
Wilcox, AJ, Baird, DD, Weinberg, CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 1999;340(23):17961799. doi: 10.1056/NEJM199906103402304.Google Scholar
Hertig, AT, Rock, J, Adams, EC. A description of 34 human ova within the first 17 days of development. Am J Anat 1956;98(3):435493. doi: 10.1002/aja.1000980306.Google Scholar
Acosta, AA, Elberger, L, Borghi, M, et al. Endometrial dating and determination of the window of implantation in healthy fertile women. Fertil Steril 2000;73(4):788798. doi: 10.1016/s0015-0282(99)00605-6.Google Scholar
Miller, JF, Williamson, E, Glue, J, et al. Fetal loss after implantation. A prospective study. Lancet 1980;2(8194):554556. doi: 10.1016/s0140-6736(80)91991-1.Google Scholar
Spandorfer, SD, Chung, PH, Kligman, I, et al. An analysis of the effect of age on implantation rates. J Assist Reprod Genet 2000;17(6):303306. doi: 10.1023/a:1009422725434.Google Scholar
Coughlan, C, Ledger, W, Wang, Q, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014;28(1):1438. doi: 10.1016/j.rbmo.2013.08.011.Google Scholar
Kodaman, PH, Taylor, HS. Hormonal regulation of implantation. Obstet Gynecol Clin North Am 2004;31(4):745766, ix. doi: 10.1016/j.ogc.2004.08.008.Google Scholar
Ludwig, H, Spornitz, UM. Microarchitecture of the human endometrium by scanning electron microscopy: menstrual desquamation and remodeling. Ann N Y Acad Sci 1991;622:2846. doi: 10.1111/j.1749-6632.1991.tb37848.x.Google Scholar
Rao, AJ, Ramachandra, SG, Ramesh, V, et al. Establishment of the need for oestrogen during implantation in non-human primates. Reprod Biomed Online 2007;14(5):563571. doi: 10.1016/s1472-6483(10)61047-4.Google Scholar
Ma, WG, Song, H, Das, SK, et al. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A 2003;100(5):29632968. doi: 10.1073/pnas.0530162100.Google Scholar
Stricker, R, Eberhart, R, Chevailler, MC, et al. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med 2006;44(7):883887. doi: 10.1515/CCLM.2006.160.Google Scholar
Hild-Petito, S, Stouffer, RL, Brenner, RM. Immunocytochemical localization of estradiol and progesterone receptors in the monkey ovary throughout the menstrual cycle. Endocrinology 1988;123(6):28962905. doi: 10.1210/endo-123-6-2896.CrossRefGoogle ScholarPubMed
Scublinsky, A, Marin, C, Gurpide, E. Localization of estradiol 17beta dehydrogenase in human endometrium. J Steroid Biochem 1976;7(10):745-7. doi: 10.1016/0022-4731(76)90174-6.Google Scholar
Bulmer, JN, Morrison, L, Longfellow, M, et al. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991;6(6):791798. doi: 10.1093/oxfordjournals.humrep.a137430.Google Scholar
Noyes, RW, Hertig, AT, Rock, J. Dating the endometrial biopsy. Am J Obstet Gynecol 1975;122(2):262263. doi: 10.1016/s0002-9378(16)33500-1.Google Scholar
McGovern, PG, Myers, ER, Silva, S, et al. Absence of secretory endometrium after false-positive home urine luteinizing hormone testing. Fertil Steril 2004;82(5):1273-7. doi: 10.1016/j.fertnstert.2004.03.070.Google Scholar
Racca, A, Drakopoulos, P, Van Landuyt, L, et al. Single and double embryo transfer provide similar live birth rates in frozen cycles. Gynecol Endocrinol 2020;36(9):824828. doi: 10.1080/09513590.2020.1712697.Google Scholar
Cha, J, Sun, X, Dey, SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012;18(12):17541767. doi: 10.1038/nm.3012.Google Scholar
Lessey, BA, Killam, AP, Metzger, DA, et al. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab 1988;67(2):334340. doi: 10.1210/jcem-67-2-334.Google Scholar
Lubahn, DB, Moyer, JS, Golding, TS, et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A 1993;90(23):1116211166. doi: 10.1073/pnas.90.23.11162.Google Scholar
Niwa, H, Burdon, T, Chambers, I, et al. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998;12(13):20482060. doi: 10.1101/gad.12.13.2048.Google Scholar
Brinsden, PR, Alam, V, de Moustier, B, et al. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil Steril 2009;91(4Suppl): 14451447. doi: 10.1016/j.fertnstert.2008.06.047.Google Scholar
Stavreus-Evers, A, Nikas, G, Sahlin, L, et al. Formation of pinopodes in human endometrium is associated with the concentrations of progesterone and progesterone receptors. Fertil Steril 2001;76(4):782791. doi: 10.1016/s0015-0282(01)01993-8.Google Scholar
Mulac-Jericevic, B, Mullinax, RA, DeMayo, FJ, et al. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 2000;289(5485):17511754. doi: 10.1126/science.289.5485.1751.Google Scholar
Tranguch, S, Wang, H, Daikoku, T, et al. FKBP52 deficiency-conferred uterine progesterone resistance is genetic background and pregnancy stage specific. J Clin Invest 2007;117(7):18241834. doi: 10.1172/JCI31622.Google Scholar
Hirota, Y, Acar, N, Tranguch, S, et al. Uterine FK506-binding protein 52 (FKBP52)-peroxiredoxin-6 (PRDX6) signaling protects pregnancy from overt oxidative stress. Proc Natl Acad Sci U S A 2010;107(35):1557715582. doi: 10.1073/pnas.1009324107.Google Scholar
Lee, K, Jeong, J, Kwak, I, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet 2006;38(10):12041209. doi: 10.1038/ng1874.Google Scholar
Franco, HL, Rubel, CA, Large, MJ, et al. Epithelial progesterone receptor exhibits pleiotropic roles in uterine development and function. FASEB J 2012;26(3):12181227. doi: 10.1096/fj.11-193334.Google Scholar
Huyen, DV, Bany, BM. Evidence for a conserved function of heart and neural crest derivatives expressed transcript 2 in mouse and human decidualization. Reproduction 2011;142(2):353368. doi: 10.1530/REP-11-0060.Google Scholar
Dey, SK, Lim, H, Das, SK, et al. Molecular cues to implantation. Endocr Rev 2004;25(3):341373. doi: 10.1210/er.2003-0020.Google Scholar
Riesewijk, A, Martin, J, van Os, R, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod 2003;9(5):253264. doi: 10.1093/molehr/gag037.Google Scholar
Diaz-Gimeno, P, Horcajadas, JA, Martinez-Conejero, JA, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril 2011;95(1):5060, 60.e1–60.e15. doi: 10.1016/j.fertnstert.2010.04.063.Google Scholar
Greening, DW, Nguyen, HP, Evans, J, et al. Modulating the endometrial epithelial proteome and secretome in preparation for pregnancy: the role of ovarian steroid and pregnancy hormones. J Proteomics 2016;144:99112. doi: 10.1016/j.jprot.2016.05.026.Google Scholar
Labarta, E, Martinez-Conejero, JA, Alama, P, et al. Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod 2011;26(7):18131825. doi: 10.1093/humrep/der126.Google Scholar
Simon, C, Garcia Velasco, JJ, Valbuena, D, et al. Increasing uterine receptivity by decreasing estradiol levels during the preimplantation period in high responders with the use of a follicle-stimulating hormone step-down regimen. Fertil Steril 1998;70(2):234239. doi: 10.1016/s0015-0282(98)00140-x.Google Scholar
Venetis, CA, Kolibianakis, EM, Bosdou, JK, et al. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60 000 cycles. Hum Reprod Update 2013;19(5):433457. doi: 10.1093/humupd/dmt014.Google Scholar
Drakopoulos, P, Racca, A, Errazuriz, J, et al. The role of progesterone elevation in IVF. Reprod Biol 2019;19(1):1-5. doi: 10.1016/j.repbio.2019.02.003.Google Scholar
Racca, A, Santos-Ribeiro, S, De Munck, N, et al. Impact of late-follicular phase elevated serum progesterone on cumulative live birth rates: is there a deleterious effect on embryo quality? Hum Reprod 2018;33(5):860868. doi: 10.1093/humrep/dey031.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×