Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2015
  • Online publication date: August 2015

1 - Introduction

Summary

Motivation

It has become increasingly recognized [1] that “photonic integration” is an important next step in the evolution of computing, telecommunications, sensing, transportation, medical, defense, and entertainment technologies. Such integration permits the best features of electronics and photonics to be exploited for information technology applications. There are important technological drivers of photonic/electronic integration, including realization of improved bandwidth and thermal management – transporting and manipulating information using photons avoids the high-frequency resistive losses and heating associated with movement of electrons in metal. Photonic/electronic integration is also evolving to include “chipscale” integration wherein both electronic and photonic circuitries are integrated on to the same chip, analogous to complementary metal-oxide semiconductor (CMOS) electronic integration, which has revolutionized computing. Potential advantages of chipscale integration include far-reaching improvements in size, weight, power consumption, performance, reliability, and cost. While chipscale photonic/electronic integration is not likely to be monolithic, as in CMOS electronic integration, and the problems to be faced will certainly be challenging, there can be little doubt that it will ultimately occur and will have considerable societal and economic impact. Such integration has been greatly advanced by recent developments in the field of silicon photonics, plasmonics, and metamaterial device architectures [2 to 21]. For example, the high index of refraction of silicon has permitted a striking reduction in the size of photonic circuits, making the dimensions of these circuits more compatible with chipscale integration. Further reductions in circuit dimensions appear possible by exploiting plasmonics.

A key component of photonic/electronic integration is the interconversion of signals between the electronic and photonic domains. This is where electro-optics comes into play. An electro-optic (EO) material is one in which the electrical fields associated with photons and electrons can communicate through a highly hyperpolarizable (easily perturbed by electric fields) charge distribution. For an electro-optic material to be optimum for the transduction of electronic signal information into photonic signal information, the charge distribution should be easily perturbed by small electric field potentials (ideally by millivolt electric field potentials to minimize power consumption) and should have very fast (ideally femtosecond) response to time-varying electrical fields. It is these features that have attracted attention to organic EO materials. The fundamental response time of conjugated π-electron systems is the phase relaxation time and is almost universally of the order of tens of femtoseconds.

[1] NSF Workshop on Very Large Scale Photonic Integration, Arlington, VA, March 19–20, 2007; Defense Science Board Advisory Group on Electron Devices Workshop on Photonic Integration, Naval Postgraduate School, Monterey, CA, July 24–26, 2007.
[2] Jalali, B. and Fathpour, S., IEEE J. Lightwave Technol., 24, 4600 (2006).
[3] Xu, Q., Almeida, V. R., Panepucci, R. R., and Lipson, M., Opt. Lett., 29, 1626 (2004).
[4] Almeida, V. R., Barrios, C. A., Panepucci, R. R., and Lipson, M., Nature, 431, 1081 (2004).
[5] Hochberg, M., Baehr-Jones, T., Wang, G., et al., Nature Mater., 5, 703 (2006).
[6] Hochberg, M., Baehr-Jones, T., Wang, G., et al., Opt. Express, 13, 5216 (2005).
[7] Takayesu, J., Hochberg, M., Baehr-Jones, T., et al., IEEE J. Lightwave Technol., 27, 440 (2008).
[8] Baehr-Jones, T., Penkov, B., Huang, J., et al., Appl. Phys. Lett., 92, 163303 (2008).
[9] Block, B. A., Younkin, T. R., Reshotko, R., et al., Opt. Express, 16, 18326 (2008).
[10] Ding, R., Baehr-Jones, T., Liu, Y., et al., Opt. Express, 18, 15618 (2010).
[11] Gould, M., Baehr-Jones, T., Ding, R., et al., Opt. Express, 19, 3952 (2011).
[12] Ding, R., Baehr-Jones, T., Kim, W.-J., et al., IEEE J. Lightwave Technol., 29, 1112 (2011).
[13] Figi, H., Bale, D. H., Szep, A., Dalton, L. R., and Chen, A., J. Opt. Soc. Am. B, 28, 1191 (2011).
[14] Lin, C.-Y., Wang, X., Chakravarty, S., et al., Appl. Phys. Lett., 97, 093304 (2010).
[15] Wang, W., Lin, C.-Y., Chakravarty, S.et al., Opt. Lett., 36, 882 (2011).
[16] Wulbern, J. H., Hampe, J., Petrov, A., et al., Appl. Phys. Lett., 94, 241107 (2009).
[17] Wulbern, J. H., Prorok, S., Hampe, J., et al., Opt. Lett., 35, 2753 (2010).
[18] Wulbern, J. H., Petrov, A., and Eich, M., Opt. Express, 17, 304 (2009).
[19] Leuthod, J., Freude, W., Brosi, J.-M., et al., Proc. IEEE, 97, 1304 (2009).
[20] Shi, S. and Prather, D. W., Adv. Optoelectron., 2011, 714895 (2011).
[21] Shi, S. and Prather, D. W., Appl. Phys. Lett., 96, 201107 (2010).
[22] MacLaughlin, C. V., Hayden, L. M., Polishak, B., et al., Appl. Phys. Lett., 92, 163303 (2008).
[23] Drenser, K. A., Larsen, R. J., Strohkendl, F. P., and Dalton, L. R., J. Phys. Chem., 103, 2290 (1999).
[24] Pockels, F., Lehrbuch der Kristalloptik, Leipzig, Teubner (1906).
[25] Bloembergen, N., Nonlinear Optics,New York, W. A. Benjamin (1965).
[26] Bloembergen, N., Nonlinear Optics, Singapore, World Scientific (1996).
[27] Bloembergen, N., Burns, W. K., and Tang, C. L., Int. J. Quant. Chem., 5, 555 (2009).
[28] Flytzanis, C., Contribution à la theorie des susceptibilities non lineaires dans less solides par FLYTZANIS Christo, These Sc. Phys., Orsay (1970).
[29] Agrawal, G. P. and Flytzanis, C., Chem. Phys. Lett., 44, 356 (1976).
[30] Agrawal, G. P., Cojon, C., and Flytzanis, C., Phys. Rev. B, 17, 775 (1978).
[31] Flytzanis, C. and Oudar, J. L., Nonlinear Optics: Materials and Devices, Berlin, Springer-Verlag (1986).
[32] Chemla, D. S. and Zyss, J., Eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Orlando, Academic Press (1987).
[33] Garito, A. F., Wong, K. Y., Cai, Y. M., Man, H. T., and Zamani-Khamiri, O., Proc. SPIE, 682, 1 (1986).
[34] Pierce, B. M. and Wing, R. M., Proc. SPIE, 682, 27 (1986).
[35] Marder, S. R., Gorman, C. B., Meyers, F.et al., Science, 265, 632 (1994).
[36] Albert, I. D. L., Marks, T. J., and Ratner, M. A., in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Kuzyk, M. G. and Dirk, C. W., Eds., New York, Marcel Dekker (1998), pp. 37–109, and references therein.
[37] Barto, R. Jr., Frank, C. W., Bedworth, P. V., Ermer, S., and Taylor, R. E., J. Phys. Chem. B, 108, 8702 (2004).
[38] Barto, R. Jr., Bedworth, P. V., Frank, C. W., Ermer, S., and Taylor, R. E., J. Chem. Phys., 122, 234907 (2005).
[39] Wang, F., Photo- and Thermo-Stabilization of Second-Order Nonlinear Optical Polymers. Unpublished Ph.D. dissertation, University of Southern California (1998).
[40] Zhang, C., Novel Phenylpolyene-Bridged Second-Order Nonlinear Optical Chromophores and New Thermally Stable Polyurethanes for Electro-Optic Applications. Unpublished Ph.D. dissertation, University of Southern California (1999).
[41] Dalton, L. R., in Polymers for Photonics Applications I, Lee, K. S., Ed., Berlin, Springer-Verlag (2002).
[42] Shi, Y., Zhang, C., Zhang, H., et al., Science, 288, 119 (2000).
[43] Williams, D. J., Ed., Nonlinear Optical Properties of Organic and Polymeric Materials, Washington, DC, ACS Symposium Series (1983).
[44] Shen, Y. R., The Principles of Nonlinear Optics, New York, John Wiley & Sons (1984).
[45] Prasad, P. N. and Ulrich, D., Eds., Nonlinear Optical and Electroactive Polymers, New York, Plenum Press (1986).
[46] Chemla, D. S. and Zyss, J., Eds., Quantum Electronics: Principles and Applications, New York, Academic Press (1987).
[47] Prasad, P. N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, New York, John Wiley & Sons (1991).
[48] Marder, S. R., Sohn, J. E., and Stucky, G. D., Eds., Materials for Nonlinear Optics: Chemical Perspectives, Washington, DC, ACS Symposium Series (1991).
[49] Messier, J., Kajzar, F., and Prasad, P. N., Eds., Organic Molecules for Nonlinear Optics and Photonics, NATO ASI Series E, Boston, Kluwer Academic (1991).
[50] Boyd, R. W., Nonlinear Optics, New York, Academic Press (1992).
[51] Hornak, L. A., Ed., Polymers for Lightwave and Integrated Optics, New York, Marcel Dekker (1992).
[52] Chaing, L. Y., Garito, A. F., and Sandman, D. J., Eds., Electrical, Optical, and Magnetic Properties of Organic Solid State Materials. Mater. Res. Soc. Proc., 247 (1992).
[53] Sienicki, K., Ed., Molecular Electronics and Molecular Electronic Devices, Boca Raton, FL, CRC Press (1993).
[54] Zyss, J., in Molecular Nonlinear Optics: Materials, Physics, and Devices, Boston, Academic Press (1993).
[55] Kuzyk, M. G. and Swalen, J. D., Eds., Progress in Nonlinear Optics: Organics and Polymeric Materials, Nonlinear Opt., 6 (1993).
[56] Garito, A. F., Jen, A. K. Y., Lee, C. Y. C., and Dalton, L. R., Eds., Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, Mater. Res. Soc. Proc., 328 (1994).
[57] Lindsay, G. A. and Singer, K. D., Eds., Polymers for Second-Order Nonlinear Optics, Washington, DC, ACS Symposium Series (1995).
[58] Bosshard, Ch., Sutter, K., Pretre, Ph., et al., Organic Nonlinear Optical Materials, Basel, Gordon & Breach (1995).
[59] Jen, A. K. Y., Lee, C. Y. C., Dalton, L. R., et al., Eds., Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, Mater. Res. Soc. Proc., 413 (1996).
[60] Kajzar, F. and Swalen, J. D., Eds., Organic Thin Films for Waveguiding Nonlinear Optics, Amsterdam, Gordon & Breach (1996).
[61] Kajzar, F., Agranovich, V. M., and Lee, C. Y. C., Photoactive Organic Materials: Science and Applications, Dordrecht, Kluwer (1996).
[62] Nalwa, H. S. and Miyata, S., Eds., Nonlinear Optics of Organic Molecular and Polymeric Materials, Boston, CRC Press (1996).
[63] Miyata, S. and Sasabe, H., Eds., Poled Polymers and their Applications in SHG and EO Devices, Amsterdam, Gordon & Breach (1997).
[64] Jenekhe, S. A. and Wynne, K. J., Photonic and Optoelectronic Polymers, Washington, DC, ACS Symposium Series (1997).
[65] Reynolds, J. R., Jen, A. K. Y., Rubner, M. F., Chiang, L. Y., and Dalton, L. R., Eds., Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, Mater. Res. Soc. Proc., 488 (1998).
[66] Kuzyk, M. G. and Dirk, C. W., Eds., Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, New York, Marcel Dekker (1998).
[67] Wise, D. J., Wnek, G. E., Trantolo, D. J., Cooper, T. M., and Gresser, J. D., Eds., Electrical and Optical Polymer Systems, New York, Marcel Dekker (1998).
[68] Lee, K. S., Ed., Polymers for Photonics Applications I, Berlin, Springer-Verlag (2002).
[69] Skotheim, T. A. and Reynolds, J. R., Handbook of Conducting Polymers. Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, Boca Raton, FL, CRC Press (2007).
[70] Herman, W. N., Flom, S. R., and Foulger, S. H., Organic Thin Films for Photonics Applications, Washington, DC, ACS Symposium Series (2010).
[71] Chen, A. and Murphy, E., Eds., Broadband Optical Modulators: Science, Technology, and Applications, New York, Taylor & Francis (2011).
[72] Shi, R. F. and Garito, A. F., in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Kuzyk, M. G. and Dirk, C. W., Eds., New York, Marcel Dekker (1998), pp. 1–36.