Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-09-02T09:25:28.748Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  10 May 2010

Martin Maier
Affiliation:
Université du Québec, Montréal
Get access

Summary

Optical fiber is commonly recognized as an excellent transmission medium owing to its advantageous properties, such as low attenuation, huge bandwidth, and immunity against electromagnetic interference. Because of their unique properties, optical fibers have been widely deployed to realize high-speed links that may carry either a single wavelength channel or multiple wavelength channels by means of wavelength division multiplexing (WDM). The advent of Erbium doped fiber amplifiers was key to the commercial adoption of WDM links in today's network infrastructure. WDM links offer unprecedented amounts of capacity in a cost-effective manner and are clearly one of the major success stories of optical fiber communications.

Since their initial deployment as high-capacity links, optical WDM fiber links turned out to offer additional benefits apart from high-speed transmission. Most notably, the simple yet very effective concept of optical bypassing enabled network designers to let in-transit traffic remain in the optical domain without undergoing optical-electrical-optical conversion at intermediate network nodes. As a result, intermediate nodes can be optically bypassed and costly optical-electrical-optical conversions can be avoided, which typically represent one of the largest expenditures in optical fiber networks in terms of power consumption, footprint, port count, and processing overhead. More important, optical bypassing gave rise to so-called all-optical networks in which optical signals stay in the optical domain all the way from source node to destination node.

All-optical networks were quickly embraced by both academia and industry, and the research and development of novel architectures, techniques, mechanisms, algorithms, and protocols in the arena of all-optical network design took off immediately worldwide.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.001
Available formats
×