Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-14T20:24:27.268Z Has data issue: false hasContentIssue false

12 - Field distribution near optical antennas at the subnanometer scale

from Part II - MODELING, DESIGN AND CHARACTERIZATION

Published online by Cambridge University Press:  05 March 2013

Carlos Pecharromán
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC and The University of Melbourne
Mario Agio
Affiliation:
European Laboratory for Nonlinear Spectroscopy (LENS) and National Institute of Optics (INO-CNR)
Andrea Alù
Affiliation:
University of Texas, Austin
Get access

Summary

Introduction

The nanoantenna concept refers to electromagnetic phenomena related to field amplification and confinement at visible or near-IR light by nanometer-sized objects [29, 206]. Nanoantennas rely on electric field enhancement by the LSPR, which takes place in metallic NPs embedded in dielectric media. There is a profuse literature about this topic and several reviews can be found elsewhere [202, 507, 508].

The simplest model for understanding LSPR is to consider the electrostatic problem of a sphere in a dielectric medium under a homogeneous applied field [151, 234, 509]. The solution is a homogeneous internal field modified by the effect of depolarization generated by surface charges. Contrary to this, the external field presents an evanescent character, decaying as r-3 outside the NP. However, the most interesting fact is that internal and surface fields diverge when the medium єd and NP єm dielectric functions are such that 2єd = -єm. From an experimental point of view, this condition can be approximately fulfilled for several metals (mainly Ag, Au and Cu) at some specific frequencies. The electric field at the NP surface can increase up to 1000 times. The resonance condition can be modified by changing the matrix or the shape of the NPs. Therefore, for either oblate or prolate NPs, the resonance condition is given by (1 - L)/єd = -Lєm, where L is the so-called depolarization factor [510], which only depends on the NP geometry. For an irregular shape, the NP is described by several depolarization factors Lk, each with its corresponding LSPR associated with it.

Type
Chapter
Information
Optical Antennas , pp. 197 - 214
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×