Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T09:53:16.976Z Has data issue: false hasContentIssue false

1 - An Overview of Numerical Simulation

Published online by Cambridge University Press:  09 October 2009

Elaine S. Oran
Affiliation:
Naval Research Laboratory, Washington DC
Jay P. Boris
Affiliation:
Naval Research Laboratory, Washington DC
Get access

Summary

Reactive flows include a broad range of phenomena, such as flames, detonations, chemical lasers, the earth's atmosphere, stars and supernovae, and perhaps even the elementary particle interactions in the very early stages of the universe. There are striking physical differences among these flows, even though the general forms of the underlying equations are all quite similar. Therefore, considerations and procedures for constructing numerical models of these systems are also similar. The obvious and major differences are in the scales of the phenomena, the input data, the mathematical approximations that arise in representing different contributing physical processes, and the strength of the coupling among these processes.

For example, in flames and detonations, there is a close coupling among the chemical reactions, subsequent heat release, and the fluid dynamics, so that all of the processes must be considered simultaneously. In the earth's upper atmosphere, which is a weakly ionized plasma in a background neutral wind, the chemical reactions among ionized gases and the fluid dynamics are weakly coupled. These reactions take place in the background provided by the neutral gas motions. The sun's atmosphere is highly ionized, with reactions among photons, electrons, and ionized and neutral atomic species, all in the presence of strong electromagnetic fields. A Type Ia supernova creates the heavier elements in the periodic table through a series of strongly coupled thermonuclear reactions that occur in nuclear flames and detonations. The types of reactions, the major physical processes, and the degree and type of coupling among the processes vary substantially in these systems. Sometimes reactions are essentially decoupled from the fluid flow, sometimes radiation is important, and sometimes diffusive transport effects are important.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×