Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T14:46:25.043Z Has data issue: false hasContentIssue false

7 - LARGE ELASTO-PLASTIC DEFORMATIONS

Published online by Cambridge University Press:  05 June 2016

Javier Bonet
Affiliation:
Swansea University
Antonio J. Gil
Affiliation:
Swansea University
Richard D. Wood
Affiliation:
Swansea University
Get access

Summary

INTRODUCTION

Many materials of practical importance, such as metals, do not behave in a hyperelastic manner at high levels of stress. This lack of elasticity is manifested by the fact that when the material is freed from stress it fails to return to the initial undeformed configuration, and instead permanent deformations are observed. Different constitutive theories or models such as plasticity, viscoplasticity, and others are commonly used to describe such permanent effects. Although the mathematics of these material models is well understood in the small strain case, the same is not necessarily true for finite deformation.

A complete and coherent discussion of these inelastic constitutive models is well beyond the scope of this chapter. However, because practical applications of nonlinear continuum mechanics often include some permanent inelastic deformations, it is pertinent to give a brief introduction to the basic equations used in such applications. The aim of this introduction is simply to familiarize the reader with the fundamental kinematic concepts required to deal with large strains in inelastic materials. In particular, only the simplest possible case of Von Mises plasticity with isotropic hardening will be fully considered, although the kinematic equations described and the overall procedure will be applicable to more general materials.

We will assume that the reader has some familiarity with small strain inelastic constitutive models such as plasticity, because several of the key equations to be introduced will not be fully justified but loosely based on similar expressions that are known to apply to small strain theory. More in-depth discussions can be found in the Bibliography.

THE MULTIPLICATIVE DECOMPOSITION

Consider the deformation of a given initial volume V into the current volume v as shown in Figure 7.1. An elemental vector dX in the local neighborhood of a 188 given initial particle P will deform into the spatial vector dx in the neighborhood of p shown in the figure. If the neighborhood of p could be isolated and freed from all forces, the material in that neighborhood would reach a new unloaded configuration characterized by the spatial vector dx (Figure 7.2). Observe that insofar as this neighborhood is conceptually isolated from the surrounding material it can be arbitrarily rotated without changing the intrinsic nature of the deformation of the material in the neighborhood. This potential indeterminacy will have implications on the choice of kinematic variables used in the subsequent formulation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×