Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: June 2016


Bathe, K-J., Finite Element Procedures in Engineering Analysis, Prentice Hall, 1996.
Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, 2000.
Bonet, J. and Bhargava, P., The incremental flow formulation for the analysis of 3-dimensional viscous deformation processes: Continuum formulation and computational aspects, Int. J. Num. Meth. Engrg., 122, 51–68, 1995.
Bonet, J., Gil, A. J., and Ortigosa, R., A computational framework for polyconvex large strain elasticity, Comput. Meths. Appl. Mech. Engrg., 283, 1061–1094, 2015.
Bonet, J., Wood, R. D., Mahaney, J., and Heywood, P., Finite element analysis of air supported membrane structures, Comput. Meths. Appl. Mech. Engrg., 190, 579–595, 2000.
Crisfield, M. A., Non-Linear Finite Element Analysis of Solids and Structures, John Wiley & Sons, Volume 1, 1991.
Eterović, A. L. and Bathe, K-L., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using logarithmic stress and strain measures, Int. J. Num. Meth. Engrg, 30, 1099–1114, 1990.
Gonzalez, O. and Stuart, A. M., A First Course in Continuum Mechanics, Cambridge University Press, 2008.
Gurtin, M., An Introduction to Continuum Mechanics, Academic Press, 1981.
Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering,John Wiley&Sons, 2000.
Hughes, T. J. R., The Finite Element Method, Prentice Hall, 1987.
Hughes, T. J. R. and Pister, K. S., Consistent linearization in mechanics of solids and structures, Compt.&Struct., 8, 391–397, 1978.
Lubliner, J., Plasticity Theory, Macmillan, 1990.
Malvern, L. E., Introduction to the Mechanics of a Continuous Medium, Prentice Hall, 1969.
Marsden, J. E. and Hughes, T. J. R., Mathematical Foundations of Elasticity, Prentice Hall, 1983.
Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Num. Meth. Engrg., 37, 1981–2004, 1994.
Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, 1972. Also Dover Publications, 2006.
Ogden, R. W., Non-Linear Elastic Deformations, Ellis Horwood, 1984.
Perić, D., Owen, D. R. J., and Honnor, M. E., A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues, Comput. Meths. Appl. Mech. Engrg., 94, 35–61, 1992.
Reddy, J. N., An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, 2004.
Schweizerhof, K. and Ramm, E., Displacement dependent pressure loads in non-linear finite element analysis, Compt.&Struct., 18, 1099–1114, 1984.
Simmonds, J. G., A Brief on Tensor Analysis, Springer, 2nd edition, 1994.
Simo, J. C., A framework for finite strain elasto-plasticity based on a maximum plastic dissipation and the multiplicative decomposition: Part 1. Continuum formulation, Comput. Meths. Appl. Mech. Engrg., 66, 199–219, 1988.
Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Meths. Appl. Mech. Engrg., 99, 61–112, 1992.
Simo, J. C. and Hughes, T. J. R., Computational Inelasticity, Springer, 1997.
Simo, J. C. and Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Meths. Appl. Mech. Engrg., 49, 221–245, 1985.
Simo, J. C. and Taylor, R. L., Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comput. Meths. Appl. Mech. Engrg., 85, 273–310, 1991.
Simo, J. C., Taylor, R. L., and Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Meths. Appl. Mech. Engrg., 51, 177–208, 1985.
Spencer, A. J. M., Continuum Mechanics, Longman, 1980.
Weber, G. and Anand, L., Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Meths. Appl. Mech. Engrg., 79, 173–202, 1990.
Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, McGraw-Hill, 4th edition, Volumes 1 and 2, 1994.