Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T07:25:09.402Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  15 December 2009

Dieter Biskamp
Affiliation:
Max-Planck-Institut für Plasmaphysik, Garching, Germany
Get access

Summary

Magnetohydrodynamics (MHD) describes the macroscopic behavior of electrically conducting fluids, notably of plasmas. However, in contrast to what the name seems to indicate, work in MHD has usually little to do with dynamics, or at least has had so in the past. In fact, most MHD studies of plasmas deal with magnetostatic configurations. This is not only a question of convenience — powerful mathematical methods have been developed in magnetostatic equilibrium theory — but is also based on fundamental properties of magnetized plasmas. While in hydrodynamics of nonconducting fluids static configurations are boringly simple and interesting phenomena are in general only caused by sufficiently rapid fluid motions, conducting fluids are often confined by strong magnetic fields for times which are long compared with typical flow decay times, so that the effects of fluid dynamics are weak, giving rise to quasistatic magnetic field configurations. Such configurations may appear in a bewildering variety of shapes generated by the particular boundary conditions, e.g. the external coils in laboratory experiments or the “foot point” flux distributions in the solar photosphere, and their study is both necessary and rewarding.

In addition to finding the appropriate equilibrium solutions one must also determine their stability properties, since in the real world only stable equilibria exist.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Dieter Biskamp, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Nonlinear Magnetohydrodynamics
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511599965.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Dieter Biskamp, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Nonlinear Magnetohydrodynamics
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511599965.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Dieter Biskamp, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Nonlinear Magnetohydrodynamics
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511599965.002
Available formats
×