Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: June 2018

6 - Nonlinear Device Modeling

Related content

Powered by UNSILO
[1]Shockley, W., “A unipolar ‘field-effect’ transistor,” Proceedings of the I.R. E., vol. 40, Nov. 1952, pp. 13651376.
[2]Tsividis, Y. P., “Operation and Modeling the MOS Transistor,” New York: McGraw-Hill, 1987, Appendix K.
[3]Ward, D. E., “Charge-based modeling of capacitance in MOS transistors,” Technical Report G201–11, Integrated Circuits Laboratory, Stanford University, June 1981.
[4]Wood, J. and Root, D. E., editors, “Fundamentals of Nonlinear Behavioral Modeling for RF and Microwave Design,” Boston: Artech House, 2005, chapter 7.
[5]Xie, Q., Xu, J., and Taur, Y., “Review and critique of analytical models of MOSFET short-channel effects in subthreshold,” IEEE Transactions on Electron Devices, vol. 59, no. 6, June 2012, pp. 15691579
[6]Gildenblat, G., (Ed.) “Compact Modeling, Principles, Techniques, and Applications,” New York: Springer, 2010.
[7]Gildenblat, G., Wang, H., Chen, T. L., Gu, X., and Cai, X., “SP: An advanced surface-potential based compact MOSFET Model,” Custom Integrated Circuits Conference, 2003.
[8]Khandelwal, S., Chauhan, Y. S., and Fjeldly, T. A, “Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices,” IEEE Transactions on Electron Devices, vol.59, no.10, pp. 2856, 2860, Oct. 2012.
[9]Radhakrishna, U., Choi, P., Goswami, S., Peh, L-S., Palacios, T., and Antoniadis, D., “MIT virtual source GaNFET – compact model for GaN HEMTs: from device physics to RF frontend circuit design and validation,” IEEE Electron Device Meeting (IEDM), Dec. 2014, pp. 11.6.1–11.6.4.
[10]Curtice, W.R., “A MESFET model for use in the design of GaAs integrated circuits, IEEE Trans. Microw. Theory Techn., vol. 28, Issue 5, 1980, pp. 448456.
[11]Curtice, W.R., “GaAs MESFET modeling and nonlinear CAD,” IEEE Trans. Microw. Theory Techn., vol. 36, issue 2, 1988, pp. 220230.
[12]Pucel, R. A., Haus, H. A., and Statz, H., “Signal and noise properties of gallium arsenide microwave field-effect transistors,” Advances in Electronics and Electron Physics, vol. 38, 1975, Elsevier, pp. 195265.
[13]Golio, J. M., Microwave MESFETs and HEMTs, Norwood, MA: Artech House, Jan. 1991.
[14]EEHEMT Models: Keysight Advanced Design System (ADS 2016.01) Documentation, Nonlinear Devices, pp. 454–480.
[15]Angelov, I., Zirath, H., and Rosman, N., “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 22582266, 1992.
[16]Angelov, I., Bengtsson, L., and Garcia, M., “Extensions of the Chalmers Nonlinear HEMT and MESFET model, IEEE Trans. Microw. Theory Techn., vol. 46, no. 11, Oct. 1996, pp.16641674.
[17]Curtice, W.R., and Ettenberg, M., “A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers,” IEEE Trans. Microw. Theory Techn., vol 33, Dec. 1985, pp.1383 – 1394.
[18]Root, D. E. “Overview of microwave FET modeling for MMIC design, charge modeling and conservation laws, and advanced topics,” 1999 Asia Pacific Microwave Conference Workshop Short Course on Modeling and Characterization of Microwave Devices and Packages, Singapore, Nov. 1999.
[19]Root, D. E., “Principles and procedures for successful large-signal measurement-based FET modeling for power amplifier design,” Nov. 2000. Available: http://cp.literature.keysight.com/litweb/pdf/5989-9099EN.pdf
[20]Maas, S., “Fixing the Curtice FET Model” Microwave Journal, March 2001
[21]Root, D. E., Xu, J., Horn, J., and Iwamoto, M., “The large-signal model: theoretical foundations, practical considerations, and recent trends,” chapter 5 in Nonlinear Transistor Model Parameter Extraction Techniques, Cambridge University Press, 2012.
[22]Pedro, J. C. and Carvalho, N. B., Intermodulation Distortion in Microwave and Wireless Circuits, Norwood, MA: Artech House, 2003.
[23]Kirkpatrick, S., Gelett, C. D., and Vecchi, M. P., “Optimization by simulated annealing,’’ Science, 220. May 1983, pp. 621–680.
[24]Antoun, G., El-Nozahi, M., and Fikry, W., “A hybrid genetic algorithm for MOSFET parameter extraction,” IEEE CCECE, vol. 2, May 2003, pp. 11111114
[25]Iwamoto, M., Xu, J., and Root, D. E., “DC and thermal modeling for III-V FETs and HBTs,” chapter 2 in Nonlinear Transistor Parameter Extraction Techniques, Rudolph, M., Fager, C., and Root, D. E., Eds., Cambridge Univ. Press.
[26]Root, D. E.Measurement-based mathematical active device modeling for high frequency circuit simulation,” IEICE Trans. on Electronics, vol. E82-C June 1999, pp. 924936.
[27]McGinty, D. J., Root, D. E., and Perdomo, J., “A Production FET modeling and library generation system,” IEEE GaAs MANTECH Conference Technical Digest, San Francisco, CA, July 1997 pp. 145148.
[28]Akhtar, S., Roblin, P., Lee, S., Ding, X., Yu, S., Kasick, J., and Strahler, J., “RF electro-thermal modeling of LDMOSFETs for power-amplifier design,” IEEE Trans. Microw. Theory Tech., vol. 50, Jun. 2002, pp. 15611570.
[29]Coughran, W. M., Fichtner, W., and Grosse, E., “Extracting transistor charges from device simulations by gradient fitting,” IEEE Trans. on Electron Devices, vol. 8, pp. 380394, 1989.
[30]Cuoco, V., van den Heijden, M .P., and de Vreede, L. C. N, “The ‘Smoothie’ data base model for the correct modeling of non-linear distortion in FET devices,” IEEE Int. Microwave Symp. Dig., vol. 3, 2002, pp. 21492152.
[31]Root, D. E., Fan, S., and Meyer, J., “Technology independent non quasi-static FET models by direct construction from automatically characterized device data,” 21st European Microwave Conf. Proc., Stuttgart, Germany, Sept. 1991, pp. 927–932.
[32]Keysight W8532EP IC-CAP manual.
[33]Xu, J.; Gunyan, D., Iwamoto, M., Cognata, A., and Root, D. E., “Measurement-based non-quasi-static large-signal FET model using artificial neural networks,” IEEE Int. Microwave Symp. Dig., June 2006, pp. 469–472.
[34]Xu, J., Gunyan, D., Iwamoto, M., Horn, J., Cognata, A., Root, D. E.; “Drain-source symmetric artificial neural network-based fet model with robust extrapolation beyond training data,” IEEE International Microwave Symposium Digest, June 2007.
[35]Wood, J., Aaen, P. H., Bridges, D., Lamey, D., Guyonnet, M., Chan, D. S., and Monsauret, N.; “A nonlinear electro-thermal scalable model for high-power RF LDMOS transistors,” IEEE Trans. Microw. Theory Techn., Feb. 2009, vol. 57, pp. 282292.
[36]Xu, J., Horn, J., Iwamoto, M., and Root, D. E., “Large-signal FET model with multiple time scale dynamics from nonlinear vector network analyzer data,” IEEE Int. Microwave Symposium Digest, May 2010.
[37]Haykin, S., Neural Networks: A Comprehensive Foundation (2nd ed.) Upper Saddle River, New Jersey: Prentice Hall; 1998.
[38]Zhang, Q. J. and Gupta, K. C., Neural Networks for RF and Microwave Design, Boston: Artech House, 2000.
[39]Matlab Neural Network ToolboxTM.
[40]Xu, J., Yagoub, M. C. E., Runtao, D., and Zhang, Q. J., “Exact adjoint sensitivity analysis for neural-based microwave modeling and design,” IEEE Trans. Microw. Theory Techn., vol. 51, Jan. 2003, pp. 226237.
[41]Root, D. E., Xu, J., Iwamoto, M., “Nonlinear FET modeling fundamentals and neural network applications,” International Microwave Symposium Workshop (WMA) Advances in Active Device Characterization & Modeling for RF & Microwave, Honolulu, Hawaii, June 2007.
[42]Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. T., “The Quickhull Algorithm for Convex Hulls,” ACM Trans. on Mathematical Software, vol 22, Dec. 1996, pp. 469483.
[43]Zhang, L. and Zhang, Q. J., “Simple and effective extrapolation technique for neural-based microwave modeling,” IEEE Microwave and Wireless Components Letters, vol 20, June 2010, pp. 301303.
[44]Root, D. E., “Measurement-based active device modeling for circuit simulation,” European Microwave Conf. Advanced Microwave Devices, Characterization, and Modeling Workshop, Madrid, Sept. 1993 (available from author).
[45]Staudinger, J., De Baca, M. C., and Vaitkus, R., “An examination of several large signal capacitance models to predict GaAs HEMT linear power amplifier performance,” IEEE Radio and Wireless Conf., Aug. 1998, pp. 343–346.
[46]Root, D. E., “Nonlinear charge modeling for FET large-signal simulation and its importance for IP3 and ACPR in communication circuits,” Proc. of the 44th IEEE Midwest Symp. on Circuits and Systems, Dayton, OH, August 2001, pp. 768–772 (corrected version available from author).
[47]Rudolph, M., Introduction to Modeling HBTs, Norwood, MA: Artech House, 2006.
[48]Rudolph, M., Doerner, R., Beilenhoff, K., Heymann, P., “Unified model for collector charge in heterojunction bipolar transistors,” IEEE Trans. Microw. Theory Tech. vol. 50 Jul. 2002, pp. 17471751.
[49]Iwamoto, M., Asbeck, P. M., Low, T. S., Hutchinson, C.P., Scott, J. B., Cognata, A., Qin, X., Camnitz, L. H., and D’Avanzo, D. C., “Linearity characteristics of GaAs HBTs and the influence of collector design,” IEEE Trans. Microw. Theory Techn. vol. 48, 2000, pp. 23772388.
[50]Iwamoto, M. and Root, D. E., “Agilent HBT Model Overview,” Compact Model Council Meeting, San Francisco, CA, Dec. 2006. Avaliable: https://community.keysight.com/docs/DOC-1201
[51]Gonzalez, G., Microwave Transistor Amplifiers (2nd ed.) Englewood Cliffs, NJ: Prentice Hall, 1984, pg. 61.
[52]Parker, A., “Getting to the heart of the matter,” IEEE Microw. Mag., April 2015, pp. 76–86.
[53]van der Toorn, R., Paasschens, J.C.J., Havens, R.J., “A physically based analytical model of the collector charge of III-V heterojunction bipolar transistors,” IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symp., Nov. 2003, pp. 111–114.
[54]Iwamoto, M., Xu, J., Horn, J., and Root, D. E., “III-V FET High Frequency Model with Drift and Depletion Charges,” IEEE International Microwave Symposium, June 2011.
[55]Root, D. E., Xu, J., Gunyan, D., Horn, J., and Iwamoto, M., “The large-signal model: theoretical and practical considerations, trade-offs, and trends,” IEEE Int. Microwave Symp. Parameter extraction strategies for compact transistor models workshop (WMB), Boston, 2009.
[56]Kundert, K., “The designer’s guide to SPICE and Spectre,” Boston: Kluwer Academic Publishers, 1995.
[57]Root, D. E. and Fan, S., “Experimental evaluation of large-signal modeling assumptions based on vector analysis of bias-dependent S-parameter data from MESFETs and HEMTs,” IEEE Int. Microwave Symp. Dig., 1992, pp. 255–259.
[58]Iwamoto, M., Root, D. E., Scott, J. B., Cognata, A., Asbeck, P. M., Hughes, B., and D’Avanzo, D. C., “Large-signal HBT model with improved collector transit time formulation for GaAs and InP technologies,” IEEE Int. Microwave Symp. Dig., Philadelphia, PA, June 2003, pp. 635638.
[59]ADS FET, Keysight Advanced Design System (ADS 2016.01) Manual, Nonlinear Devices, pp. 379–383.
[60]Root, D. E. “Elements of Measurement-Based Large-Signal Device Modeling,” IEEE Radio and Wireless Conference (RAWCON) Workshop on Modeling and Simulation of Devices and Circuits for Wireless Communication Systems, Colorado Springs, August 1998.
[61]Root, D. E., “ISCAS tutorial/short course and special session on high-speed devices and modeling,” Sydney, May 2001, pp. 2.71–2.78
[62]Root, D. E., Iwamoto, M., and Wood, J., “Device modeling for III-V semiconductors: an overview,” IEEE Compound Semiconductor IC Symp., October 2004.
[63]Aarts, A. C. T., van der Hout, R.; Paasschens, J. C. J., Scholten, A. J., Willemsen, M., and Klaassen, D. B. M.; “Capacitance modeling of laterally non-uniform MOS devices,” IEEE IEDM Tech. Dig., Dec. 2004, pp. 751–754.
[64]Parker, A. E. and Mahon, S. J., “Robust extraction of access elements for broadband small-signal FET models,” IEEE Int. Microwave Symp. Dig., 2007, pp.783–786.
[65]Statz, H., Newman, P., Smith, I.W., Pucel, R. A., and Haus, H. A., “GaAs FET device and circuit simulation in SPICE,” IEEE Trans. Electron Devices, vol. 34, Feb. 1987, pp. 160169.
[66]Smith, I. W., Statz, H., Haus, H. A., and Pucel, R. A., “On charge nonconservation in FETs,” IEEE Trans. Electron Devices, vol. 34 Dec. 1987, pp. 25652568.
[67]Desoer, C. A. and Kuh, E. S., Basic Circuit Theory, New York: McGraw-Hill, 1969, Table 19.1, p. 801.
[68]Iwamoto, M. and Root, D.E., “Large-Signal III-V HBT Model with Improved Collector Transit Time Formulations, Dynamic Self-Heating, and Thermal Coupling,” Int. Workshop on Nonlinear Microwave and Millimeter Wave Integrated Circuits (INMMIC), Rome, Nov. 2004.
[69]Leckey, J. G., “A new current dependent gate charge model for GaN HFET devices,” 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, Oct. 2016, pp. 556–558.
[70]McAndrew, C. C., “Validation of MOSFET model source-drain symmetry,” IEEE Trans. Electron Devices, vol. 53, no. 9, Sept. 2006, pp. 22022206.
[71]Yhland, K., Rorsman, N., Garcia, M., and Merkel, H. F., “A symmetrical nonlinear HFET/MESFET model suitable for intermodulation analysis of amplifiers and resistive mixers,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 1, January 2000, pp 1522.
[72]Poulton, K. et al, “Thermal design and simulation and design of bipolar integrated circuits,” IEEE Journal of Solid-State Circuits, Vol. 27., No. 10, October 1992. pp. 13791387
[73]Conway, A. M., Asbeck, P. M., “Virtual gate large-signal model of GaN HFETs,” IEEE Int. Microwave Symp. Dig., June 2007, pp. 605–608.
[74]Jardel, O., DeGroote, F., Reveyrand, T., Jacquet, J. C., Charbonniaud, C., Teyssier, J. P., Floriot, D., and Quere, R.An electrothermal model for AlGaN/GaN power HEMTs including trapping effects to improve large-signal simulation results on high VSWR,” IEEE Trans. Microw. Theory Tech., vol. 55, Dec. 2007, pp. 26602669.
[75]Jardel, O., Sommet, R., Teyssier, J-P, and Quere, R., “Nonlinear characterization and modeling of dispersive effects in high-frequency power transistors,” chapter 7 in Nonlinear Transistor Model Parameter Extraction Techniques, Cambridge University Press, 2012.
[76]Parker, A. E., Root, D. E., “Pulse measurements quantify dispersion in pHEMTs,” URSI Int. Symp. on Signals, Systems, and Electronics (ISSSE), Pisa, Sept. 1998, pp. 444–449.
[77]Santarelli, A. et al, “A double-pulse technique for the dynamic characterization of GaN FETs,” IEEE Microwave Wireless Component Letters, vol. 24, no. 2, pp. 132134, February, 2014
[78]Santarelli, A. et al, “GaN FET nonlinear modeling based on double pulse I/V characteristics,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, December 2014, pp. 32623273.
[79]Keysight Technologies. Available: http://www.keysight.com/find/nvna
[80]Blockley, P. Gunyan, D., and Scott, J. B., “Mixer-based, vector-corrected, vector signal/network analyzer offering 300kHz – 20GHz bandwidth and traceable phase response,” IEEE Int. Microwave Symp. Dig. Long Beach, Jun. 2005, pp. 1497–1500.
[81]Verspecht, J., “Calibration of a measurement system for high frequency nonlinear devices,” Ph. D. Dissertation, Dept. ELEC, Vrije Universiteit Brussel, Nov. 1995.
[82]Van Moer, W. and Gomme, L.,” NVNA versus LSNA: enemies or friends?IEEE Microw. Mag., volume: 11, issue 1, 2010, pp. 97103.
[83]Vandamme, E. P., Grabinski, W., and Schreurs, D., “Large-signal network analyzer measurements and their use in device modeling,” Proc. 9th Int. Conf. Mixed Design of Integrated Circuits and Systems (MIXDES) Wroclaw, 2002
[84]Schreurs, D., Verspecht, J., Nauwelaers, B., Van de Capelle, A., and Rossum, M., “Direct extraction of the non-linear model for two-port devices from vectorial nonlinear network analyzer measurements,” 27th European Microwave Conf. Proc., 1997, pp. 921–926.
[85]Curras-Francos, M.C., Tasker, P. J., Fernandez-Barciela, M., Campos-Roca, Y., and Sanchez, E., “Direct extraction of nonlinear FET Q-V functions from time domain large signal measurements,” IEEE Microwave and Guided Wave Letters, vol. 10, 2000, pp. 531533.
[86]Tasker, P.J., Demmler, M., Schlechtweg, M., Barciela, M. Fernandez-, “Novel approach to the extraction of transistor parameter from large signal measurements,” 24th European Microwave Conf. Sept. 1994, pp. 1301–1306.
[87]Root, D. E., Horn, J., Xu, J., Iwamoto, M., Sischka, F., and Yanagimoto, Y., “Time and frequency domain transistor modeling based on Nonlinear Vector Network Analyzer data,” MOS-AK/GSA Workshop, San Francisco, CA, Dec. 2010.
[88]Root, D. E. et alNVNA Measurements for Behavioral and Compact Device Modeling,” IEEE International Microwave Symposium Workshop (WMB) Device Model Extraction from Large-signal Measurements, Montreal, CA, June 2012.
[89]Sischka, F., “Nonlinear network analyzer measurements for better transistor modeling,” 2011 IEEE Conference on Microelectronic Test Structures, Apr. 4–7, 2011 Amsterdam, The Netherlands.
[90]Sischka, F., “Improved compact models based on NVNA measurements,” in Proc. European Microwave Week 2010 Workshop, Paris, France.
[91]Root, D. E., “Future Device Modeling Trends,” IEEE Microw. Mag., Nov./Dec. 2012, pp 45–59.
[92]Grabinski, W., Vandamme, E. P., Schreurs, D., Maeder, H., Pilloud, O., and McAndrew, C. C., “5.5 GHz LSNA MOSFET modeling for RF CMOS circuit design,” in 60th IEEE ARFTG Conf. Dig., 2002, pp. 39–47.
[93]Root, D. E., “Compact and behavioral modeling techniques for GaN devices,” IEEE CSICS Short Course on GaN Modeling, La Jolla, CA, 2014.
[94]Angelov, I., “Advanced GaN and GaAs transistor evaluation and transistor modeling using combined small – and large-signal VNA & NVNA microwave measurements,” IEEE International Microwave Symposium Workshop: Direct Extraction of FET Circuit Models from Microwave and Baseband Large-Signal Measurements for Model-Based Microwave Power Amplifier Design, 2015.
[95]Angelov, I., Thorsell, M., Andersson, K., Rorsman, N., and Zirath, H., “Recent results on using LSVNA for Compact modeling of GaN FET devices,” IEEE International Microwave Symposium Workshop (WMB): Device Model Extraction from Large-Signal Measurements, Montreal, June 2012.
[96]Smith, M. A., Howard, T. S., Anderson, K. J., and Pavio, A. M., “RF nonlinear device characterization yields improved modeling accuracy,” IEEE International Microwave Symposium Digest, 1986. pp. 381–384.
[97]Raffo, A., Falco, S. D., Vadala, V., and Vannini, G., “Characterization of GaN HEMT low-frequency dispersion through a multiharmonic measurement system,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 9, September 2010.
[98]Raffo, A., Bosi, G., Vadalà, V., and Vannini, G., “Behavioral modeling of GaN FETs: a load-line approach,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 1, January 2014.
[99]Xu, J., Jones, R., Harris, S. A., Nielsen, T., and Root, D. E., “Dynamic FET model – DynaFET – for GaN transistors from NVNA active source injection measurements,” International Microwave Symposium Digest, June 2014.
[100]Xu, J., Halder, S., Kharabi, F., McMacken, J., Gering, J., and Root, D. E., “Global dynamic FET model for GaN transistors: DynaFET Model validation and comparison to locally tuned models,” 83rd IEEE ARFTG Measurement Conference, Tampa, FL., June 2014.
[101]Xu, J. and Root, D. E., “NVNA Characterization enables DynaFET: an advanced compact time-domain FET model,” NVNA Users Forum, Tampa, FL, June 2014.