Skip to main content Accessibility help
  • Print publication year: 2018
  • Online publication date: June 2018

2 - Basic Nonlinear Microwave Circuit Analysis Techniques

[1]Pillage, L. T. and Rohrer, R. A., “Asymptotic waveform evaluation for timing analysis,” IEEE Trans. Comput.-Aided Design, vol. CD-9, Apr. 1990.
[2]Brazil, T. J., “Causal-convolution – a new method for the transient analysis of linear systems at microwave frequencies,” IEEE Trans. Microw. Theory Techn., vol. MTT-43, Feb. 1995, pp. 315323.
[3]Odabasioglu, A., Celik, M., and Pileggi, L. T., “PRIMA: passive reduced-order interconnect macromodeling algorithm,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. CAD-17, Aug. 1998, pp. 645654.
[4]Nagel, L. W., Spice2: A Computer Program to Simulate Semiconductor Circuits, Electronic Research Laboratory, University of California-Berkeley, Memo ERL-M520, 1975.
[5]HSPICE User Guide: Simulation and Analysis, Mountain View, CA: Synopsys, Inc., 2008.
[6]Matlab Simulink 7 User Manual, Natick, MA: The Mathworks, Inc., 2010.
[7]ADS Ptolemy Simulation, Palo Alto, CA: Agilent Technologies, 2004.
[8]Visual System Simulator Getting Started Guide – NI AWR Design Environment, v12 ed., El Segundo, CA: National Instruments AWR, 2016.
[9]Burden, R. L. and Faires, D. J., Numerical Analysis, 9th ed., Boston, MA: Brooks/Cole, 2011.
[10]Chen, C.-T., Digital Signal Processing – Spectral Computation and Filter Design, New York, NY: Oxford University Press, 2001.
[11]Aprille, T. J. and Trick, T. N., “Steady-state analysis of nonlinear circuits with periodic inputs,” Proc. IEEE, vol. 60, pp. 108114, Jan. 1972.
[12]Kundert, K., White, J., and Sangiovanni-Vicentelli, A., Steady-State Methods for Simulating Analog and Microwave Circuits, Norwell, MA: Kluwer Academic Pub. 1990.
[13]Schetzen, M., The Volterra and Wiener Theories of Nonlinear Systems, New York, NY: John Wiley & Sons, 1980.
[14]Rhyne, G. W., Steer, M. B., and Bates, B. D., “Frequency-domain nonlinear circuit analysis using generalized power series,” IEEE Trans. Microw. Theory Techn., vol. MTT-36, Feb. 1988, pp. 379387.
[15]Chang, C. R. and Steer, M. B., “Frequency-domain nonlinear microwave circuit simulation using the arithmetic operator method,” IEEE Trans. Microw. Theory Techn., vol. MTT-38, Aug. 1990.
[16]Maas, S. A., Microwave Mixers, Norwood, MA: Artech House, 1986.
[17]Maas, S. A., Nonlinear Microwave Circuits, Norwood, MA: Artech House, 1988.
[18]Suárez, A., Analysis and Design of Autonomous Microwave Circuits, New York, NY: John Wiley & Sons, 2009.
[19]Verspecht, J., “Large signal network analysis,” IEEE Microw. Mag., vol. 6, Dec. 2005, pp. 8292.
[20]Root, D., Verspecht, J., Sharrit, D., Wood, J., and Cognata, A., “Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements,” IEEE Trans. Microw. Theory Techn., vol. MTT-53, Nov. 2005, pp. 36563664.
[21]Kurokawa, K., “Some basic characteristics of broadband negative resistance oscillator circuits,” The Bell System Tech. Jour., vol. 48, Jul.–Aug. 1969, pp. 19371955.
[22]Ushida, A. and Chua, L., “Frequency-domain analysis of nonlinear circuits driven by multi-tone signals,” IEEE Trans. Circuits and Syst., vol. CAS-31, Sep. 1984, pp. 766779.
[23]Rizzoli, V., Cecchetti, , and Lipparini, C., A., “A general-purpose program for the analysis of nonlinear microwave circuits under multitone excitation by multidimensional Fourier transform,” 17th European Microw. Conf. Proc, pp. 635–640, 1987, pp. 766–779.
[24]Carvalho, N. B. and Pedro, J. C., “Novel artificial frequency mapping techniques for multi-tone simulation of mixers,” 2001 IEEE MTT-S Intern. Microw. Symp Dig., 2001, pp. 455–458.
[25]Rodrigues, P. J., Computer Aided Analysis of Nonlinear Microwave Circuits, Norwood, MA: Artech House, 1998.
[26]Pedro, J. C. and Carvalho, N. B., “Efficient harmonic balance computation of microwave circuits’ response to multitone spectra,” 29th European Microw. Conf. Proc., 1999, pp. 103–106.
[27]Brachtendorf, H., Welsch, G., Laur, R., and Bunse-Gerstner, A., “Numerical steady-state analysis of electronic circuits driven by multitone signals,” Electrical Engineering, vol. 79, Apr. 1996, pp. 103112.
[28]Ngoya, E., and Larchevèque, R., “Envelop transient analysis: a new method for the transient and steady state analysis of microwave communication circuits and systems,” 1996 IEEE MTT-S Int. Microw. Symp. Dig. 1996, pp. 1365–1368.
[29]Rizzoli, V., Neri, A., and Mastri, F., “A Modulation-oriented Piecewise Harmonic Balance Technique Suitable for Transient Analysis and Digitally Modulated Analysis,” 26th European Microw. Conf. Proc., Prague, Cheks Rep. 1996, pp. 546550.
[30]Sharrit, D., “Method for simulating a circuit,” US Patent No. 5588142, Dec. 24, 1996.
[31]Roychowdhury, J., “Analyzing circuits with widely separated time scales using numerical PDE methods,” IEEE Trans. Circuits and Syst., vol. CAS-48, May 2001, pp. 578594.
[32]Oliveira, J. F. and Pedro, J. C., “An efficient time-domain simulation method for multirate RF nonlinear circuits,” IEEE Trans. Microw. Theory Techn., vol. MTT-55, Nov. 2007, pp. 23842392.
[33]Oliveira, J. F. and Pedro, J. C., “An innovative time-domain simulation technique for strongly nonlinear heterogeneous RF circuits operating in diverse time-scales,” 3rd European Integrated Circuits Conf. Proc., Oct. 2008, pp. 530–533.
[34]Benedetto, S., Biglieri, E., and Daffara, R., “Modeling and performance evaluation of nonlinear satellite links - a Volterra series approach,” IEEE Trans. Aerospace and Electronic Syst., vol. AES-15, Apr. 1979, pp. 494507.
[35]Pedro, J. C. and Maas, S. A., “A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches,” IEEE Trans. Microw. Theory Techn., vol. MTT-53, Apr. 2005, pp. 11501163.
[36]Cao, H., Tehrani, A. Soltani, Fager, C., Eriksson, T., and Zirath, H., “I/Q imbalance compensation using a nonlinear modeling approach,” IEEE Trans. Microw. Theory Techn., vol. MTT-57, Mar. 2009, pp. 513518.