Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T09:23:28.081Z Has data issue: false hasContentIssue false

18 - Random walks, resonance, and ratchets

Published online by Cambridge University Press:  18 December 2009

Vladimir Privman
Affiliation:
Clarkson University, New York
Get access

Summary

Two recent developments involving activation and transport processes in simple stochastic nonlinear systems are reviewed in this chapter. The first is the idea of ‘resonant activation’ in which the mean first-passage time for escape over a fluctuating barrier passes through a minimum as the characteristic time scale of the fluctuating barrier is varied. The other is the notion of active transport in a fluctuating environment by so-called ‘ratchet’ mechanisms. Here, nonequilibrium fluctuations combined with spatial anisotropy conspire to generate systematic motion. The fundamental principles of these phenomena are covered, and some motivations for their study are described.

Introduction

The study of the interplay of noise and nonlinear dynamics presents many challenges, and interesting phenomena and insights appear even in onedimensional (1D) systems. Examples include Kramers’ fundamental theory of the Arrhenius temperature dependence of activated rate processes, Landauer's further insights into the role of multiplicative noise, and the theory of noise-induced transitions. This chapter reviews more recent developments which go beyond those studies in that the characteristic time scale of the fluctuations plays a major role in the dynamics of the system, whereas the phenomena in are fundamentally white-noise effects. Specifically, the two effects to be described in this chapter are the phenomena of ‘resonant activation’ and transport in ‘stochastic ratchets’.

Resonant activation is a generalization of Kramers’ model of activation over a potential barrier to the situation where the barrier itself is fluctuating randomly.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×