Skip to main content Accessibility help
×
  • Cited by 73
Publisher:
Cambridge University Press
Online publication date:
March 2017
Print publication year:
2017
Online ISBN:
9781139017848

Book description

Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and how to compute it from basic microscopic principles, and generalized hydrodynamics.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] Todd, B. D. and Daivis, P. J.. Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol. Simul., 33: 189, 2007.
[2] Evans, D. J. and Morriss, G. P.. Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, Cambridge, 2nd edition, 2008.
[3] McQuarrie, D. A. Statistical Mechanics. Harper Collins, New York, 1976.
[4] de Groot, S. R. and Mazur, P.. Non-Equilibrium Thermodynamics. Dover, New York, 1984.
[5] Allen, M. P. and Tildesley, D. J.. Computer Simulation of Liquids. Clarendon Press, Oxford, 1987.
[6] Rapaport, D. The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, 1995.
[7] Frenkel, D. and Smit, B.. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego, 2002.
[8] Sadus, R. J. Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. Elsevier, Amsterdam, 1999.
[9] Alder, B. J. and Wainwright, T. E.. Phase transition for a hard sphere system. J. Chem. Phys., 27: 1208, 1957.
[10] Rahman, A. Correlations in the motion of atoms in liquid argon. Phys. Rev., 136: A105, 1964.
[11] Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159: 98, 1967.
[12] Alder, B. J., Gass, D. M., and Wainwright, T. E.. Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid. J. Chem. Phys., 53: 3813, 1970.
[13] Green, M. S. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys., 22: 398, 1954.
[14] Kubo, R. Statistical-mechanical theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan, 12: 570, 1957.
[15] Lees, A. W. and Edwards, S. F.. The computer study of transport processes under extreme conditions. J. Phys. C, 5: 1921, 1972.
[16] Gosling, E. M., McDonald, I. R., and Singer, K.. On the calculation by molecular dynamics of the shear viscosity of a simple fluid. Mol. Phys., 26: 1475, 1973.
[17] Ashurst, W. T. and Hoover, W. G. Dense-fluid shear viscosity via nonequilibrium molecular dynamics. Phys. Rev. A, 11: 658, 1975.
[18] Hoover, W. G. Atomistic nonequilibrium computer simulations. Physica, 118A: 111, 1983.
[19] Hoover, W. G. Nonequilibrium molecular dynamics: the first 25 years. Physica A, 194: 450, 1993.
[20] Hoover, W. G., Evans, D. J., Hickman, R. B., Ladd, A. J. C., Ashurst, W. T., and Moran, B.. Lennard-Jones triple-point bulk and shear viscosities. Green–Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys. Rev. A, 22: 1690, 1980.
[21] Evans, D. J. and Morriss, G. P. Nonlinear-response theory for steady planar Couette flow. Phys. Rev. A, 30(3): 1528, 1984.
[22] Ciccotti, G. and Jacucci, G.. Direct computation of dynamical response by molecular dynamics: The mobility of a charged Lennard-Jones particle. Phys. Rev. Lett., 35: 789, 1975.
[23] Evans, D. J. and Morriss, G. P. Transient-time-correlation functions and the rheology of fluids. Phys. Rev. A, 38: 4142, 1988.
[24] Müller-Plathe, F.. Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids. Phys. Rev. E, 59: 4894, 1999.
[25] Hafskjold, B., Ikeshoji, T., and Kjelstrup Ratkje, S.. On the molecular mechanism of thermal diffusion in liquids. Mol. Phys., 80: 1389, 1993.
[26] Jou, D., Lebon, G., and Casas-Vázquez, J.. Extended Irreversible Thermodynamics. Springer, 4th edition, 2010.
[27] Öttinger, H. C.. Beyond Equilibrium Thermodynamics. John Wiley & Sons, Hoboken, New Jersey, 2005.
[28] Bird, R. B., Armstrong, R. C., and Hassager, O.. Dynamics of Polymeric Liquids, Volume 1 Fluid Mechanics. John Wiley & Sons, New York, 2nd edition, 1987.
[29] Bird, R. B. Curtiss, C. F. Armstrong, R. C. and Hassager, O. Dynamics of Polymeric Liquids, Volume 2 Kinetic Theory. John Wiley & Sons, New York, 2nd edition, 1987.
[30] Tanner, R. I. Engineering Rheology. Oxford University Press, 2nd edition, 2000.
[31] Huilgol, R. R. and Phan-Thien, N. Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam, 1997.
[32] Truesdell, C. and Noll, W. The Non-Linear Field Theories of Mechanics. Springer-Verlag, 3rd edition, 2004.
[33] Juretschke, H. J. Crystal Physics. W. A. Benjamin Inc., 1974.
[34] de Gennes, P. G. and Prost, J. The Physics of Liquid Crystals. Oxford University Press, 2nd edition, 1993.
[35] Snider, R. F. and Lewchuk, K. S. Irreversible thermodynamics of a fluid system with spin. J. Chem. Phys., 46: 3163, 1967.
[36] Evans, D. J. and Streett, W. B. Transport properties of homonuclear diatomics II. Dense fluids. Mol. Phys., 36: 161, 1978.
[37] McLennan, J. A. Introduction to Nonequilibrium Statistical Mechanics. Prentice Hall, New Jersey, 1989.
[38] Eu, B. C. Nonequilibrium Statistical Mechanics: Ensemble Method. Kluwer Academic, 1998.
[39] Zwanzig, R. Nonequilibrium Statistical Mechanics. Oxford University Press, 2001.
[40] Zubarev, D. N. Morozov, V. G. and Röpke, G. Statistical Mechanics of Nonequilibrium Processes. Akademie Verlag, 1996.
[41] Gaspard, P. Chaos, Scattering and Statistical Mechanics. Cambridge University Press, 1998.
[42] Goldstein, H. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.
[43] Tolman, R. C. The Principles of Statistical Mechanics. Dover reprinting of the 1938 edition published by Oxford University Press, 1979.
[44] Williams, S. R. and Evans, D. J. Time-dependent response theory and nonequilibrium freeenergy relations. Phys. Rev. E, 78: 021119, 2008.
[45] Yamada, T. and Kawasaki, K. Nonlinear effects in shear viscosity of critical mixtures. Prog. Theor. Phys., 38: 1031, 1967.
[46] Yamada, T. and Kawasaki, K. Application of mode-coupling theory to nonlinear stress tensor in fluids. Prog. Theor. Phys., 53: 111, 1975.
[47] Kawasaki, K. and Gunton, J. D. Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects. Phys. Rev. A, 8: 2048, 1973.
[48] Visscher, W. M. Transport processes in solids and linear-response theory. Phys. Rev. A, 10: 2461, 1974.
[49] Dufty, J. W. and Lindenfeld, M. J. Nonlinear transport in the Boltzmann limit. J. Stat. Phys., 20: 259, 1979.
[50] Cohen, D. E. G. Kinetic theory of non-equilibrium fluids. Physica A, 118: 17, 1983.
[51] Morriss, G. P. and Evans, D. J. Isothermal response theory. Mol. Phys., 54: 629, 1985.
[52] Morriss, G. P. and Evans, D. J. Application of transient correlation-functions to shear-flow far from equilibrium. Phys. Rev. A, 35: 792, 1987.
[53] Todd, B. D. Application of transient time correlation functions to nonequilibrium molecular dynamics simulations of elongational flow. Phys. Rev. E, 56: 6723–6728, 1997.
[54] Petravic, J. and Evans, D. J. Nonlinear response for time-dependent external fields. Phys. Rev. Lett., 78: 1199, 1997.
[55] Petravic, J. and Evans, D. J. Nonlinear response for nonautonomous systems. Phys. Rev. E, 56: 1207, 1997.
[56] Petravic, J. and Evans, D. J. Approach to the non-equilibrium time-periodic state in a “steady” shear flow model. Mol. Phys., 95: 219, 1998.
[57] Petravic, J. and Evans, D. J. Nonlinear response theory for time-dependent external fields: Shear flow and color conductivity. Int. J. Thermophys., 19: 1049, 1998.
[58] Petravic, J. and Evans, D. J. Time dependent nonlinear response theory. Trends in Statistical Physics, 2: 85, 1998.
[59] Petravic, J. and Evans, D. J. The Kawasaki distribution function for nonautonomous systems. Phys. Rev. E, 58: 2624, 1998.
[60] Todd, B. D. Nonlinear response theory for time-periodic elongational flows. Phys. Rev. E, 58: 4587, 1998.
[61] Hansen, J. P. and McDonald, I. R. Theory of Simple Liquids. Academic Press, New York, 1986.
[62] Heyes, D. M. The Liquid State: Applications of Molecular Simulations. Wiley, Chichester, 1997.
[63] Daivis, P. J. and Evans, D. J. Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane. J. Chem. Phys., 100: 541, 1994.
[64] Evans, D. J. Cohen, E. G. D. and Morriss, G. P. Probability of 2nd law violations in shearing steady-states. Phys. Rev. Lett., 71: 2401, 1993.
[65] Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci., 20: 130, 1963.
[66] Weeks, J. D. Chandler, D. and Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys., 54: 5237, 1971.
[67] Evans, D. J. and Searles, D. J. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E, 50: 1645, 1994.
[68] Gallavotti, G. and Cohen, E. G. D. Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett., 74: 2694, 1995.
[69] Wang, G. M. Sevick, E. M. Mittag, E. Searles, D. J. and Evans, D. J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett., 89: 050601, 2002.
[70] Maxwell, J. C. Tait's “Thermodynamics” II. Nature, 17: 278, 1878.
[71] Evans, D. J. and Searles, D. J. The fluctuation theorem. Advances in Physics, 51: 1529, 2002.
[72] Bustamante, C. Liphardt, J. and Ritort, F. The nonequilibrium thermodynamics of small systems. Physics Today, 58: 43, 2005.
[73] Evans, D. J. Searles, D. J. and Williams, S. R. Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems. Wiley, 2016.
[74] Evans, D. J. Searles, D. J. and Rondoni, L. Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium. Phys. Rev. E, 71: 056120, 2005.
[75] Evans, D. J. Searles, D. J. and Williams, S. R. On the fluctuation theorem for the dissipation function and its connection with response theory. J. Chem. Phys., 128: 014504, 2008.
[76] Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78: 2690, 1997.
[77] Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Phys. Rev. E, 56: 5018, 1997.
[78] Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60: 2721, 1999.
[79] Crooks, G. E. Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys., 90: 1481, 1998.
[80] Casas-Vázquez, J. and Jou, D. Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys., 66: 1937, 2003.
[81] Jepps, O. G. Ayton, G. and Evans, D. J. Microscopic expressions for the thermodynamic temperature. Phys. Rev. E, 62: 4757, 2000.
[82] Rickayzen, G. and Powles, J.G. Temperature in the classical microcanonical ensemble. J. Chem. Phys., 114: 4333, 2001.
[83] Rugh, H. H. Dynamical approach to temperature. Phys. Rev. Lett., 78: 772, 1997.
[84] Baranyai, A. Temperature of nonequilibrium steady-state systems. Phys. Rev. E, 62: 5989, 2000.
[85] Irving, J. H. and Kirkwood, J. G. The statistical mechanical theory of transport processes. 4. The equations of hydrodynamics. J. Chem. Phys., 18: 817, 1950.
[86] Todd, B. D. Evans, D. J. and Daivis, P. J. Pressure tensor for inhomogeneous fluids. Phys. Rev. E, 52: 1627, 1995.
[87] Monaghan, D. R. J. and Morriss, G. P. Microscopic study of steady convective flow in periodic systems. Phys. Rev. E, 56: 476, 1997.
[88] Todd, B. D. Daivis, P. J. and Evans, D. J. Heat flux vector in highly inhomogeneous nonequilibrium fluids. Phys. Rev. E, 51: 4362, 1995.
[89] Daivis, P. J. Travis, K. P. and Todd, B.D. A technique for the calculation of mass, energy and momentum densities at planes in molecular dynamics simulations. J. Chem. Phys., 104: 9651, 1996.
[90] Jepps, O.G. and Bhatia, S. K. Method for determining the shear stress in cylindrical systems. Phys. Rev. E, 67: 041206, 2003.
[91] Heyes, D. M. Smith, E. R. Dini, D. and Zaki, T. A. The method of planes pressure tensor for a spherical subvolume. J. Chem. Phys., 140: 054506, 2014.
[92] Heyes, D. M. Smith, E. R. Dini, D. and Zaki, T. A. The equivalence between volume averaging and method of planes definitions of the pressure tensor. J. Chem. Phys., 135: 024512, 2011.
[93] Hardy, R. J. Formulas for determining local properties in molecular-dynamics simulations: Shock waves. J. Chem. Phys., 76: 622, 1982.
[94] Cormier, J. Rickman, J. M. and Delph, T. J. Stress calculation in atomistic simulations of perfect and imperfect solids. J. Appl. Phys., 89: 99, 2001.
[95] Hartkamp, R. Hunt, T. A. and Todd, B. D. A method-of-planes approach for the calculation of position-dependent self-diffusion coefficients in confined fluids. Unpublished.
[96] Travis, K. P. Todd, B. D. and Evans, D. J. Departure from Navier-Stokes hydrodynamics in confined liquids. Phys. Rev. E, 55: 4288, 1997.
[97] Lee, S. H. and Cummings, P. T. Shear viscosity of model mixtures by nonequilibrium molecular dynamics. I. Argon-krypton mixtures. J. Chem. Phys., 99: 3919, 1993.
[98] Lee, S. H. and Cummings, P. T. Effect of three-body forces on the shear viscosity of liquid argon. J. Chem. Phys., 101: 6206, 1994.
[99] Marcelli, G. Todd, B. D. and Sadus, R. J. Analytic dependence of the pressure and energy of an atomic fluid under shear. Phys. Rev. E, 63: 021204, 2001.
[100] Zhang, J. and Todd, B. D. Pressure tensor and heat flux vector for confined nonequilibrium fluids under the influence of three-body forces. Phys. Rev. E, 69: 031111, 2004.
[101] Barker, J. A. Fisher, R. A. and Watts, R. O. Liquid argon: Monte Carlo and molecular dynamics calculations. Mol. Phys., 21: 657, 1971.
[102] Axilrod, B. M. and Teller, E. Interaction of the van der Waals’ type between three atoms. J. Chem. Phys., 11: 299, 1943.
[103] Torii, D. Nakano, T. and Ohara, T. Contribution of inter- and intramolecular energy transfers to heat conduction in liquids. J. Chem. Phys., 128: 044504, 2008.
[104] Lutsko, J. F. Stress and elastic constants in anisotropic solids: Molecular dynamics techniques. J. Appl. Phys., 64: 1152, 1988.
[105] Smith, E. R. Heyes, D. M. Dini, D. and Zaki, T. A. Control-volume representation of molecular dynamics. Phys. Rev. E, 85: 056705, 2012.
[106] Ewald, P. P. The calculation of optical and electrostatic grid potential. Ann. Phys. (Leipzig), 64: 253, 1921.
[107] Lekner, J. Summation of Coulomb fields in computer-simulated disordered systems. Physica A, 176: 485, 1991.
[108] Lekner, J. Coulomb forces and potentials in systems with an orthorhombic unit cell. Molec. Simul., 20: 357, 1998.
[109] Wolf, D. Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. Phys. Rev. Lett., 68: 3315, 1992.
[110] Wolf, D. Keblinski, S. R. Phillpot, S. R. and Eggebrecht, J. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation. J. Chem. Phys., 110: 8254, 1999.
[111] Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc., 58: 1486, 1936.
[112] Barker, J. A. and Watts, R. O. Monte-Carlo studies of dielectric properties of water-like models. Mol. Phys., 26: 789, 1973.
[113] Heyes, D. M. Electrostatic potentials and fields in infinite point charge lattices. J. Chem. Phys., 74: 1924, 1981.
[114] Wheeler, D. R. Fuller, N. G. and Rowley, R. L. Non-equilibrium molecular dynamics simulation of the shear viscosity of liquid methanol: Adaption of the Ewald sum to Lees-Edwards boundary conditions. Mol. Phys., 92: 55, 1997.
[115] Alejandre, J. Tildesley, D. J. and Chapela, G. A. Molecular dynamics simulation of the orthobaric densities and surface tension of water. J. Chem. Phys., 102: 4574, 1995.
[116] Heyes, D. M. Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. Phys. Rev. B, 49: 755, 1994.
[117] Nosé, S. and Klein, M. L. Constant pressure molecular dynamics for molecular systems. Molec. Phys., 50: 1055, 1983.
[118] Galamba, N. de Castro, C. A. N., and Ely, J. F. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations. J. Chem. Phys., 120: 8676, 2004.
[119] Petravic, J. Thermal conductivity of ethanol. J. Chem. Phys., 123: 174503, 2005.
[120] Parry, D. E. Electrostatic potential in surface region of an ionic-crystal. Surf. Sci., 49: 433, 1975.
[121] Parry, D. E. Correction. Surf. Sci., 54: 195, 1976.
[122] Heyes, D. M. Barber, M and Clarke, J. H. R. Molecular-dynamics computer-simulation of surface properties of crystalline potassium-chloride. Faraday Trans. II, 73: 1485, 1977.
[123] Muscatello, J. and Bresme, F. A comparison of Coulombic interaction methods in nonequilibrium studies of heat transfer in water. J. Chem. Phys., 135: 234111, 2011.
[124] Fennell, C. J. and Gezelter, J. D. Is the Ewald summation still necessary? pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys., 124: 234104, 2006.
[125] Evans, D. J. and Morriss, G. P. Non-Newtonian molecular dynamics. Comput. Phys. Rep., 1: 297, 1984.
[126] Hoover, W. G. Hoover, C. G. and Petravic, J. Simulation of two- and three-dimensional dense-fluid shear flows via nonequilibrium molecular dynamics: Comparison of time-andspace-averaged stresses from homogeneous Doll's and Sllod shear algorithms with those from boundary-driven shear. Phys. Rev. E, 78: 046701, 2008.
[127] Ladd, C. A. J. Equations of motion for non-equilibrium molecular dynamics simulations of viscous flow in molecular fluids. Mol. Phys., 53: 459, 1984.
[128] Daivis, P. J. and Todd, B. D. A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalised homogeneous flows. J. Chem. Phys., 124: 194103, 2006.
[129] Kraynik, A. M. and Reinelt, D. A. Extensional motions of spatially periodic lattices. Int. J. Multiphase Flow, 18: 1045, 1992.
[130] Todd, B. D. and Daivis, P. J. Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions. Phys. Rev. Lett., 81: 1118, 1998.
[131] Todd, B. D. and Daivis, P. J. A new algorithm for unrestricted duration molecular dynamics simulations of planar elongational flow. Computer Physics Communications, 117: 191, 1999.
[132] Todd, B. D. and Daivis, P. J. The stability of nonequilibrium molecular dynamics simulations of elongational flows. J. Chem. Phys., 112: 40, 2000.
[133] Baranyai, A. and Cummings, P. T. Steady state simulation of planar elongation flow by nonequilibrium molecular dynamics. J. Chem. Phys., 110: 42, 1999.
[134] Hunt, T. A. Bernardi, S. and Todd, B. D. A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow. J. Chem. Phys., 133: 154116, 2010.
[135] Bernardi, S. Brookes, S. J. Searles, D. J. and Evans, D. J. Response theory for confined systems. J. Chem. Phys., 137: 074114, 2012.
[136] Bernardi, S. and Searles, D. J. Local response in nanopores. Molec. Simul., 42: 463, 2016.
[137] Baig, C. Edwards, B. J. Keffer, D. J. and Cochran, H. D. A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow. J. Chem. Phys., 122: 114103, 2005.
[138] Edwards, B. J. Baig, C. and Keffer, D. J. An examination of the validity of nonequilibrium molecular-dynamics simulation algorithms for arbitrary steady-state flows. J. Chem. Phys., 123: 114106, 2005.
[139] Edwards, B. J. Baig, C. and Keffer, D. J. A validation of the p-SLLOD equations of motion for homogeneous steady-state flows. J. Chem. Phys., 124: 194104, 2006.
[140] Edwards, B. J. and Dressler, M. A reversible problem in non-equilibrium thermodynamics: Hamiltonian evolution equations for non-equilibrium molecular dynamics simulations. J. Non-Newtonian Fluid Mech., 96: 163, 2001.
[141] Borzsák, I. Cummings, P. T. and Evans, D. J. Shear viscosity of a simple fluid over a wide range of strain rates. Mol. Phys., 100: 2735, 2002.
[142] Hunt, T. A. and Todd, B. D. On the Arnold cat map and periodic boundary conditions for planar elongational flow. Mol. Phys., 101: 3445, 2003.
[143] Todd, B. D. Cats, maps and nanoflows: Some recent developments in nonequilibrium nanofluidics. Mol. Simul., 31: 411, 2005.
[144] Frascoli, F. Searles, D. J. and Todd, B. D. Chaotic properties of planar elongational flows and planar shear flows: Lyapunov exponents, conjugate-pairing rule and phase space contraction. Phys. Rev. E, 73: 046206, 2006.
[145] Bhupathiraju, R. Cummings, P. T. and Cochran, H. D. An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow. Mol. Phys., 88: 1665, 1996.
[146] Hansen, D. P. and Evans, D. J. A parallel algorithm for nonequilibrium molecular dynamics simulation of shear flow on distributed memory machines. Mol. Simul., 13: 375, 1994.
[147] Todd, B. D. and Daivis, P. J. Elongational viscosities from nonequilibrium molecular dynamics simulations of oscillatory elongational flow. J. Chem. Phys., 107: 1617, 1997.
[148] Baranyai, A. and Cummings, P. T. Nonequilibrium molecular dynamics study of shear and shear-free flows in simple fluids. J. Chem. Phys., 103: 10217, 1995.
[149] Sprott, J. C. Chaos and Time Series Analysis. Oxford University Press, Oxford, 2003.
[150] Katok, A. and Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.
[151] Frascoli, F. Searles, D. J. and Todd, B. D. Boundary condition independence of molecular dynamics simulations of planar elongational flow. Phys. Rev. E, 75: 066702, 2007.
[152] Frascoli, F. Searles, D. J. and Todd, B. D. Chaotic properties of isokinetic-isobaric atomic systems under planar shear and elongational flows. Phys. Rev. E, 77: 056217, 2008.
[153] Evans, D. J. Hoover, W. G. Failor, B. H. Moran, B. and Ladd, A. J. C. Nonequilibrium molecular dynamics via Gauss's principle of least constraint. Phys. Rev. A, 28: 1016, 1983.
[154] Nosé, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys., 81: 511, 1984.
[155] Nosé, S. A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys., 52: 255, 1984.
[156] Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31: 1695, 1985.
[157] Butler, B. D. Ayton, G. Jepps, O. G. and Evans, D. J. Configurational temperature: Verification of Monte Carlo simulations. J. Chem. Phys., 109: 6519, 1998.
[158] Lue, L. and Evans, D. J. Configurational temperature for systems with constraints. Phys. Rev. E, 62: 4764, 2000.
[159] Delhommelle, J. and Evans, D. J. Configurational temperature thermostat for fluids undergoing shear flow: application to liquid chlorine. Mol. Phys., 99: 1825, 2001.
[160] Lue, L. Jepps, O. G. Delhommelle, J. and Evans, D. J. Configurational thermostats for molecular systems. Mol. Phys., 100: 2387, 2002.
[161] Delhommelle, J. and Evans, D. J. Correspondence between configurational temperature and molecular kinetic temperature thermostats. J. Chem. Phys., 117: 6016, 2002.
[162] Braga, C. and Travis, K. P. A configurational temperature Nosé-Hoover thermostat. J. Chem. Phys., 123: 134101, 2005.
[163] Travis, K. P. and Braga, C. Configurational temperature and pressure molecular dynamics: review of current methodology and applications to the shear flow of a simple fluid. Mol. Phys., 104: 3735, 2006.
[164] Travis, K. P. and Braga, C. Configurational temperature control for atomic and molecular systems. J. Chem. Phys., 128: 014111, 2008.
[165] Evans, D. J. and Holian, B.L. Shear viscosities away from the melting line a comparison of equilibrium and non-equilibrium molecular-dynamics. J. Chem. Phys., 78: 5147, 1983.
[166] Evans, D. J. and Holian, B. L. The Nosé-Hoover thermostat. J. Chem. Phys., 83: 4069, 1985.
[167] Evans, D. J. and Sarman, S. Equivalence of thermostatted nonlinear responses. Phys. Rev. E, 48: 65, 1993.
[168] Liem, S. Y. Brown, D. and Clarke, J. H. R. Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys. Rev. A, 45: 3706, 1992.
[169] Padilla, P. and Toxvaerd, S. Simulating shear flow. J. Chem. Phys., 104: 5956, 1996.
[170] Daivis, P. J. Dalton, B. A. and Morishita, T. Effect of kinetic and configurational thermostats on claculations of the first normal stress coefficient in nonequilibrium molecular dynamics simulations. Phys. Rev. E, 86: 056707, 2012.
[171] Petravic, J. Time dependence of phase variables in a steady shear flow algorithm. Phys. Rev. E, 71: 011202, 2005.
[172] Daivis, P. J. and Todd, B. D. Frequency dependent elongational viscosity by nonequilibrium molecular dynamics. Int. J. Thermophys., 19: 1063, 1998.
[173] Baranyai, A. and Evans, D. J. New algorithm for constrained molecular-dynamics simulation of liquid benzene and naphthalene. Molec. Phys., 70(1): 53, 1990.
[174] Bright, J. N. Evans, D. J. and Searles, D. J. New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint. J. Chem. Phys., 122: 194106, 2005.
[175] Sarman, S. Evans, D. J. and Baranyai, A. Extremum properties of the Gaussian thermostat. Physica A, 208: 191, 1994.
[176] Evans, D. J. Cohen, E. G. D. and Morriss, G. P. Viscosity of a simple fluid from its maximal Lyanpunov exponents. Phys. Rev. A, 42: 5990, 1990.
[177] Sarman, S. Evans, D. J. and Morriss, G. P. Conjugate pairing rule and thermal-transport coefficients. Phys. Rev. A, 45: 2233–2242, 1992.
[178] Ditolla, F. D. and Ronchetti, M. Applicability of Nosé isothermal reversible dynamics. Phys. Rev. E, 48: 1726, 1993.
[179] Holian, B. L. Voter, A. F. and Ravelo, R. Thermostatted molecular-dynamics – how to avoid the Toda demon hidden in Nosé-Hoover dynamics. Phys. Rev. E, 52: 2338, 1995.
[180] Toxvaerd, S. and Olsen, O. H. Canonical molecular-dynamics of molecules with internal degrees of freedom. Ber. Bunsenges. Phys. Chem., 93: 274, 1990.
[181] Martyna, G. J. Klein, M. L. and Tuckerman, M. E. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 97: 2635, 1992.
[182] Branka, A. C. Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation. Phys. Rev. E, 61: 4769, 2000.
[183] Branka, A. C. Kowalik, M. and Wojciechowski, K. W. Generalization of the Nosé-Hoover approach. J. Chem. Phys., 119: 1929, 2003.
[184] Erpenbeck, J. J. Shear viscosity of the hard-sphere fluid via nonequilibrium moleculardynamics. Phys. Rev. Lett., 52: 1333, 1984.
[185] Evans, D. J. and Morriss, G. P. Shear thickening and turbulence in simple fluids. Phys. Rev. Lett., 56: 2172, 1986.
[186] Delhommelle, J. Petravic, J. and Evans, D. J. Reexamination of string phase and shear thickening in simple fluids. Phys. Rev. E, 68: 031201, 2003.
[187] Loose, W. and Hess, S. Rheology of dense model fluids via nonequilibrium molecular dynamics – shear thinning and ordering transition. Rheol. Acta, 28: 91, 1989.
[188] Evans, D. J. Cui, S. T. Hanley, H. J. M. and Straty, G. C. Conditions for the existence of a reentrant solid-phase in a sheared atomic fluid. Phys. Rev. A, 46: 6731, 1992.
[189] Delhommelle, J. Petravic, J. and Evans, D. J. On the effects of assuming flow profiles in nonequilibrium simulations. J. Chem. Phys., 119: 11005, 2003.
[190] Delhommelle, J. and Evans, D. J. Comparison of thermostatting mechanisms in NVT and NPT simulations of decane under shear. J. Chem. Phys., 115: 43, 2001.
[191] Kusnezov, D. Bulgac, A. and Bauer, W. Canonical ensembles from chaos. Ann. Phys., 204: 155, 1990.
[192] Braga, C. and Travis, K. P. Configurational constant pressure molecular dynamics. J. Chem. Phys., 124: 104102, 2006.
[193] Tuckerman, M. E. Mundy, C. J. Balasubramanian, S. and Klein, M. L. Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys., 106: 5615, 1997.
[194] Evans, D. J. and Morriss, G. P. Isothermal-isobaric molecular dynamics. Chem. Phys., 77: 63, 1983.
[195] Melchionna, S. Ciccotti, G. and Holian, B. L. Hoover NPT dynamics for systems varying in shape and size. Mol. Phys., 78: 533, 1993.
[196] Bernardi, S. Private communication.
[197] Daivis, P. J. Matin, M. L. and Todd, B. D. Nonlinear shear and elongational rheology of model polymer melts by non-equilibrium molecular dynamics. J. Non-Newtonian Fluid Mech., 111: 1, 2003.
[198] Frascoli, F. and Todd, B. D. Molecular dynamics simulation of planar elongational flow at constant pressure and constant temperature. J. Chem. Phys., 126: 044506, 2007.
[199] Perkins, T. T. Smith, D. E. Larson, R. G. and Chu, S. Stretching of a single tethered polymer in a uniform flow. Science, 268: 83, 1995.
[200] Dobson, M. Periodic boundary conditions for long-time nonequilibrium molecular dynamics simulations of incompressible flows. J. Chem. Phys., 141: 184103, 2014.
[201] Hunt, T. A. Periodic boundary conditions for the simulation of uniaxial extensional flow of arbitrary duration. Molec. Simul., 42: 347, 2016.
[202] Cifre, H. J. G., Hess, S. and Kröger, M. Linear viscoelastic behavior of unentangled polymer melts via non-equilibrium molecular dynamics. Macromol. Theory Simul., 13: 748, 2004.
[203] Barnes, H. A. Hutton, J. F. and Walters, K. An Introduction to Rheology. Elsevier, Amsterdam, 1989.
[204] Jain, A. Sasmal, C. Hartkamp, R. Todd, B. D. and Prakash, J. R. Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations. Chem. Eng. Sci., 121: 245, 2015.
[205] Adler, P. M. and Brenner, H. Spatially periodic suspensions of convex particles in linear shear flows. 1. Description and kinematics. Int. J. Multiphase Flow, 11: 361, 1985.
[206] Adler, P. M. Zuzovsky, M. and Brenner, H. Spatially periodic suspensions of convex particles in linear shear flows. Int. J. Multiphase Flow, 11: 387, 1985.
[207] Ge, J. Marcelli, G. Todd, B. D. and Sadus, R. J. Energy and pressure of fluids under shear at different state points. Phys. Rev. E, 64: 021201, 2001.
[208] Ge, J. Marcelli, G. Todd, B. D. and Sadus, R. J. Erratum: Energy and pressure of fluids under shear at different state points. Phys. Rev. E, 65: 069901(E), 2002.
[209] Ge, J. Todd, B. D. Wu, G. and Sadus, R. J. Scaling behaviour for the pressure and energy of shearing fluids. Phys. Rev. E, 67: 061201, 2003.
[210] Todd, B. D. Power-law exponents for the shear viscosity of non-Newtonian simple fluids. Phys. Rev. E, 72: 041204, 2005.
[211] Desgranges, C. and Delhommelle, J. Universal scaling law for energy and pressure in a shearing fluid. Phys. Rev. E, 79: 052201, 2009.
[212] Travis, K. P. Searles, D. J. and Evans, D. J. Strain rate dependent properties of a simple fluid. Mol. Phys., 95: 195, 1998.
[213] Ferrario, M. Ciccotti, G. Holian, B. L. and Ryckaert, J. P. Shear-rate dependence of the viscosity of the Lennard-Jones liquid at the triple point. Phys. Rev. A, 44: 6936, 1991.
[214] Daivis, P. J. Thermodynamic relationships for shearing linear viscoelastic fluids. J. Non-Newtonian Fluid Mech., 152: 120, 2008.
[215] Daivis, P. J. and Evans, D. J. Thermal conductivity of a shearing fluid. Phys. Rev. E, 48: 1058, 1993.
[216] Spiegel, M. R. Theory and Problems of Vector Analysis and an Introduction to Tensor Analysis. McGraw-Hill, Singapore, 1974.
[217] Daivis, P. J. Matin, M. L. and Todd, B. D. Nonlinear shear and elongational rheology of model polymer melts at low strain rates. J. Non-Newtonian Fluid Mech., 147: 35, 2007.
[218] Ge, J. Wu, G.-W. Todd, B. D. and Sadus, R. J. Equilibrium and nonequilibrium molecular dynamics methods for detemining solid-liquid phase coexistence at equilibrium. J. Chem. Phys., 119(21): 11017, 2003.
[219] Matin, M. L. Todd, B. D. and Daivis, P. J. Various aspects of non-equilibrium molecular dynamics simulation of polymer rheology. Swinburne University Internal Report, 2003.
[220] Green, H. S. The Molecular Theory of Fluids. North-Holland Interscience, New York, 1952.
[221] Pryde, J. A. The Liquid State. Hutchinson University Library, London, 1966.
[222] Hanley, H. J. M. and Evans, D. J. Equilibrium and non-equilibrium radial distribution functions in mixtures. Mol. Phys., 39: 1039, 1980.
[223] Hess, S. Shear-flow-induced distortion of the pair-correlation function. Phys. Rev. A, 22: 2844, 1980.
[224] Hess, S. Similarities and differences in the non-linear flow behavior of simple and molecular liquids. Physica A, 118: 79, 1983.
[225] Kalyuzhnyi, Y. V. Cui, S. T. Cummings, P. T. and Cochran, H. D. Distribution functions of a simple fluid under shear: Low shear rates. Phys. Rev. E, 60: 1716, 1999.
[226] Gan, H. H. and Eu, B. C. Theory of the nonequilibrium structure of dense simple fluids – effects of shearing. Phys. Rev. A, 45: 3670, 1992.
[227] Gan, H. H. and Eu, B. C. Theory of the nonequilibrium structure of dense simple fluids – effects of shearing. 2. High-shear-rate effects. Phys. Rev. A, 46: 6344, 1992.
[228] Ge, J. The State Point Dependence of Classical Fluids under Shear. PhD thesis, Swinburne University of Technology, 2004.
[229] Desgranges, C. and Delhommelle, J. Rheology of liquid fcc metals: Equilibrium and transient-time correlation-function nonequilibrium molecular dynamics simulations. Phys. Rev. B, 78: 184202, 2008.
[230] Desgranges, C. and Delhommelle, J. Shear viscosity of liquid copper at experimentally accessible shear rates: Application of the transient-time correlation function formalism. J. Chem. Phys., 128: 084506, 2008.
[231] Desgranges, C. and Delhommelle, J. Molecular simulation of transport in nanopores: Application of the transient-time correlation function formalism. Phys. Rev. E, 77: 027701, 2008.
[232] Desgranges, C. and Delhommelle, J. Estimating the conductivity of a nanoconfined liquid subjected to an experimentally accessible external field. Mol. Simul., 34: 177, 2008.
[233] Pan, G. and McCabe, C. Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism. J. Chem. Phys., 125: 194527, 2006.
[234] Hartkamp, R. Bernardi, S. and Todd, B. D. Transient-time correlation function applied to mixed shear and elongational flows. J. Chem. Phys., 136: 064105, 2012.
[235] Evans, D. J. Homogeneous NEMD algorithm for thermal conductivity application of noncanonical linear response theory. Phys. Lett. A, 91: 457, 1982.
[236] Wood, W. W. Long-time tails of the Green – Kubo integrands for a binary mixture. J. Stat. Phys., 57: 675, 1989.
[237] Evans, D. J. and Hanley, H. J. M. Heat induced instability in a model liquid. Molec. Phys., 68: 97, 1989.
[238] Hansen, D. P. and Evans, D. J. A generalized heat flow algorithm. Mol. Phys., 81: 767, 1994.
[239] Evans, D. J. Thermal conductivity of the Lennard-Jones fluid. Phys. Rev. A, 34: 1449, 1986.
[240] Galamba, N. de Castro, C. A. N. and Ely, J. F. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides. J. Chem. Phys., 126: 204511, 2007.
[241] Tyrrell, H. J. V. and Harris, K. R. Diffusion in Liquids. Elsevier, 1984.
[242] MacGowan, D. and Evans, D. J. Heat and matter transport in binary-liquid mixtures. Phys. Rev. A, 34: 2133, 1986.
[243] Sarman, S. Evans, D. J. and Cummings, P. T. Recent developments in non-Newtonian molecular dynamics. Phys. Rep., 305: 1, 1998.
[244] Sarman, S. and Evans, D. J. Heat flow and mass diffusion in binary Lennard-Jones mixtures. Phys. Rev. A, 45: 2370, 1992.
[245] Sarman, S. and Evans, D. J. Heat flow and mass diffusion in binary Lennard-Jones mixtures. II. Phys. Rev. A, 46: 1960, 1992.
[246] Maginn, E. J. Bell, A. T. and Theodorou, D. N. J. Phys. Chem., 97: 4173, 1993.
[247] Wheeler, D. R. and Newman, J. Molecular dynamics simulations of multicomponent diffusion. 2. Nonequilibrium method. J. Phys. Chem. B, 108: 18362, 2004.
[248] MacGowan, D. and Evans, D. J. A comparison of NEMD algorithms for thermal conductivity. Phys. Lett. A, 117: 414, 1986.
[249] MacGowan, D. and Evans, D. J. Addendum to heat and matter transport in binary-liquid mixtures. Phys. Rev. A, 36: 948, 1987.
[250] Evans, D. J. and Cummings, P. T. Non-equilibrium molecular dynamics algorithm for the calculation of thermal diffusion in simple fluid mixtures. Molec. Simul., 72: 893, 1991.
[251] Perronace, A. Simon, J.-M. Rousseau, B. and Ciccotti, G. Flux expression and NEMD perturbations for models of semi-flexible molecules. Molec. Phys., 99(13): 1139, 2001.
[252] Mandadapu, K. Jones, R. E. and Papadopoulos, P. A homogeneous nonequilibrium molecular dynamics method for calculating the heat transport coefficient of mixtures and alloys. J. Chem. Phys., 133: 034122, 2010.
[253] Perronace, A. Leppla, C. Leroy, F. Rousseau, B. and Wiegand, S. Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane and n-decane mixtures. J. Chem. Phys., 116: 3718, 2002.
[254] Kirkwood, J. G. and Buff, F. P. The statistical mechanical theory of solutions. I. J. Chem. Phys., 19: 774, 1951.
[255] Miller, N. A. T., Daivis, P. J. Snook, I. K. and Todd, B. D. Computation of thermodynamic and tranport properties to predict thermophoretic effects in an argon-krypton mixture. J. Chem. Phys., 139: 144504, 2013.
[256] Hansen, J.-P. and McDonald, I. R. Theory of Simple Liquids. Academic Press, 3rd edition, 2006.
[257] Krüger, P. Bedeaux, D. Schnell, S. K. Kjelstrup, S. Vlugt, T. J. H. and Simon, J.-M. Kirkwood-buff integrals for finite volumes. J. Phys. Chem. Lett., 4: 235, 2013.
[258] Nichols, J. W. Moore, S. G. and Wheeler, D. R. Improved implementation of Kirkwood-Buff solution theory in periodic molecular simulations. Phys. Rev. E, 80: 051203, 2009.
[259] Hannam, S. D. W. Daivis, P. J. and Bryant, G. Dynamics of a model colloidal suspension from dilute to freezing. Submitted, 2016.
[260] Zhou, Y. and Miller, G. H. Green–Kubo formulas for mutual difusion coefficients in multicomponent systems. J. Phys. Chem., 100: 5516, 1996.
[261] Evans, D. J. and Murad, S. Thermal conductivity in molecular fluids. Molec. Phys., 68(6): 1219, 1989.
[262] Daivis, P. J. and Evans, D. J. Non-equilibrium molecular dynamics calculation of thermal conductivity of flexible molecules: butane. Mol. Phys., 81: 1289, 1994.
[263] Daivis, P. J. and Evans, D. J. Temperature dependence of the thermal conductivity for two models of liquid butane. Chem. Phys., 198: 25, 1995.
[264] Marechal, G. and Ryckaert, J. P. Atomic versus molecular description of transport properties in polyatomic fluids: n-butane as an illustration. Chem. Phys. Lett., 101: 548, 1983.
[265] Toxvaerd, S. Molecular dynamics calculation of the equation of state of alkanes. J. Chem. Phys., 93(6): 4290, 1990.
[266] Reith, D. Pütz, M. and Müller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem., 24: 1624, 2003.
[267] Shell, M. S. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys., 129: 144108, 2008.
[268] Potestio, R. Peter, C. and Kremer, K. Computer simulations of soft matter: Linking the scales. Entropy, 16: 4199, 2014.
[269] Raabe, G. and Sadus, R. J. Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water. J. Chem. Phys., 137: 104512, 2012.
[270] Evans, D. J. and Murad, S. Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Molec. Phys., 34(2): 327, 1977.
[271] Hess, S. Rheological properties via nonequilibrium molecular dynamics: From simple towards polymeric liquids. J. Non-Newtonian Fluid Mech., 23: 305, 1987.
[272] Warner, H. R. Jr. Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam., 11(3): 379, 1972.
[273] Grest, G. S. and Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A, 33(5): 3628, 1986.
[274] Kremer, K. and Grest, G. S. Dynamics of entangled linear polymer melts – a moleculardynamics simulation. J. Chem. Phys., 92: 5057, 1990.
[275] Snook, I. Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems. Elsevier, Amsterdam, 2007.
[276] Johnson, J. K. Müller, E. A. and Gubbins, K. E. Equation of state for Lennard-Jones chains. J. Phys. Chem., 98: 6413, 1994.
[277] Ryckaert, J.-P. and Bellemans, A. Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett., 30(1): 123, 1975.
[278] Ryckaert, J.-P. Ciccotti, G. and Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 23: 327, 1977.
[279] Andersen, H. C. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys., 52: 24, 1983.
[280] Martyna, G. J. Tuckerman, M. E. Tobias, D. J. and Klein, M. L. Explicit reversible integrators for extended systems dynamics. Molec. Phys., 87(5): 1117, 1996.
[281] Balasubramanian, S. C. J. Mundy, and M. L. Klein. Shear viscosity of polar fluids: Molecular dynamics calculations of water. J. Chem. Phys., 105(24): 11190, 1996.
[282] Edberg, R. Evans, D. J. and Morriss, G. P. Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm. J. Chem. Phys., 84: 6933, 1986.
[283] Baranyai, A. and Evans, D. J. NEMD investigation of the rheology of oblate molecules: shear flow in liquid benzene. Molec. Phys., 71(4): 835, 1990.
[284] Ciccotti, G. Ferrario, M. and Ryckaert, J.-P. Molecular dynamics of rigid systems in cartesian coordinates: A general formulation. Molec. Phys., 47(6): 1253, 1982.
[285] Morriss, G. P. and Evans, D. J. A constraint algorithm for the computer simulation of complex molecular liquids. Comput. Phys. Commun., 62: 267, 1991.
[286] Olmsted, R. D. and Snider, R. F. Differences in fluid dynamics associated with an atomic versus a molecular description of the same system. J. Chem. Phys., 65: 3407, 1976.
[287] Yamakawa, H. Modern Theory of Polymer Solutions. Harper & Row, New York, 1971.
[288] Allen, M. P. Atomic and molecular representations of molecular hydrodynamic variables. Mol. Phys., 52: 705, 1984.
[289] Ciccotti, G. and Ryckaert, J. P. Molecular dynamics simulation of rigid molecules. Computer Physics Reports, 4: 345, 1986.
[290] Edberg, R. Evans, D. J. and Morriss, G. P. On the nonlinear Born effect. Mol. Phys., 62: 1357, 1987.
[291] Cui, S. T. Cummings, P. T. and Cochran, H. D. The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors. Mol. Phys., 88: 1657, 1996.
[292] Evans, D. J. Non-equilibrium molecular dynamics study of the rheological properties of diatomic liquids. Mol. Phys., 42: 1355, 1981.
[293] Travis, K. P. Daivis, P. J. and Evans, D. J. Computer simulation algorithms for molecules undergoing planar Couette flow: A nonequilibrium molecular dynamics study. J. Chem. Phys., 103: 1109, 1995.
[294] Travis, K. P. Daivis, P. J. and Evans, D. J. Thermostats for molecular fluids undergoing shear flow: Application to liquid chlorine. J. Chem. Phys., 103: 10638, 1995.
[295] Travis, K. P. Daivis, P. J. and Evans, D. J. Erratum: Thermostats for molecular fluids undergoing shear flow: Application to liquid chlorine. J. Chem. Phys., 105: 3893, 1996.
[296] Baranyai, A. Evans, D. J. and Daivis, P. J. Isothermal shear-induced heat flow. Phys. Rev. A, 46: 7593, 1992.
[297] Edberg, R. Morriss, G. P. and Evans, D. J. Rheology of n-alkanes by nonequilibrium molecular dynamics. J. Chem. Phys., 86: 4555, 1987.
[298] Cummings, P. T. and Evans, D. J. Nonequilibrium molecular dynamics approaches to transport properties and non-newtonian fluid rheology. Ind. Eng. Chem. Res., 31: 1237, 1992.
[299] Reynolds, O. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Phil. Mag., 20(127): 469, 1885.
[300] Tildesley, D. J. and Madden, P. A. Time correlation functions for a model of liquid carbon disulphide. Molec. Phys., 48(1): 129, 1983.
[301] Prathiraja, P. Daivis, P. J. and Snook, I. K. A molecular simulation study of shear viscosity and thermal conductivity of liquid carbon disulphide. J. Mol. Liq., 154: 6, 2010.
[302] Matin, M. L. Daivis, P. J. and Todd, B. D. Comparison of planar Couette flow and planar elongational flow for systems of small freely jointed chain molecules. J. Chem. Phys., 113: 9122, 2000.
[303] Matin, M. L. Daivis, P. J. and Todd, B. D. Erratum: “Comparison of planar Couette flow and planar elongational flow for systems of small freely jointed chain molecules” [J. Chem. Phys. 113, 9122 (2000)]. J. Chem. Phys., 115: 5338, 2001.
[304] Matin, M. L. Daivis, P. J. and Todd, B. D. Cell neighbour list method for planar elongational flow: rheology of a diatomic fluid. Comput. Phys. Commun., 151: 35, 2003.
[305] Müller-Plathe, F. Coarse-graining in polymer simulation: From the atomic to the mesoscopic scale and back. ChemPhysChem, 3: 754, 2002.
[306] Padding, J. T. and Briels, W. J. Coarse-grained molecular dynamics simulations of polymer melts in transient and steady shear flow. J. Chem. Phys., 118: 10276, 2003.
[307] Kröger, M. Loose, W. and Hess, S. Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics. J. Rheol., 37: 1057, 1993.
[308] Ferry, J. D. Viscoelastic Properties of Polymers. Wiley, New York, 1980.
[309] Kröger, M. and Hess, S. Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics. Phys. Rev. Lett., 85: 1128, 2000.
[310] Bosko, J. T. Todd, B. D. and Sadus, R. J. Viscoelastic properties of dendrimers in the melt by nonequilibrium molecular dynamics. J. Chem. Phys., 121: 12050, 2004.
[311] Hunt, T. A. and Todd, B. D. A comparison of model linear chain molecules with constrained and flexible bond lengths under planar Couette and extensional flows. Mol. Simul., 35: 1153, 2009.
[312] Prud'homme, R. K. and Bird, R. B. The dilational properties of suspensions of gas bubbles in incompressible Newtonian and non-Newtonian fluids. J. Non-Newtonian Fluid Mech., 3: 261, 1977/1978.
[313] Sarman, S. Daivis, P. J. and Evans, D. J. Self-diffusion of rodlike molecules in strong shear fields. J. Chem. Phys., 47: 1784, 1993.
[314] Hunt, T. A. Diffusion of linear polymer melts in shear and extensional flows. J. Chem. Phys., 131: 054904, 2009.
[315] Stokes, G. G. Mathematical and Physical Papers. Volume 1. Oxford Press, Oxford, 1880.
[316] Clarke, C. and Carswell, R. Principles of Astrophysical Fluid Dynamics. Cambridge University Press, Cambridge, 1995.
[317] Rubbert, G. and Saaris, G. A general three-dimensional potential-flow method applied to V/STOL aerodynamics. SAE, 680304: 945, 1968.
[318] Tabeling, P. Introduction to Microfluidics. Oxford University Press, New York, 2005.
[319] Bruus, H. Theoretical Microfluidics. Oxford University Press, New York, 2008.
[320] Travis, K. P. and Gubbins, K. E. Poiseuille flow of Lennard-Jones fluids in narrow slit pores. J. Chem. Phys., 112: 1984, 2000.
[321] Alley, W. E. and Alder, B. J. Generalised transport coefficients for hard spheres. Phys. Rev. A, 27: 3158, 1983.
[322] Todd, B. D. Hansen, J. S. and Daivis, P. J. Non-local shear stress for homogeneous fluids. Phys. Rev. Lett., 100: 195901, 2008.
[323] Hess, S. Viscoelasticity of a simple liquid in the pre-freezing regime. Phys. Lett. A, 90: 293, 1982.
[324] Hansen, J. S. Daivis, P. J. Travis, K. P. and Todd, B. D. Parameterisation of the nonlocal viscosity kernel for an atomic fluid. Phys. Rev. E, 76: 041121, 2007.
[325] Bertolini, D. and Tani, A. Generalized hydrodynamics and the acoustic modes of water – theory and simulation results. Phys. Rev. E, 51: 1091, 1995.
[326] Bertolini, D. and Tani, A. Stress tensor and viscosity of water – molecular-dynamics and generalized hydrodynamics results. Phys. Rev. E, 52: 1699, 1995.
[327] Puscasu, R. M. Todd, B. D. Daivis, P. J. and Hansen, J. S. Viscosity kernel of molecular fluids: butane and polymer melts. Phys. Rev. E, 82: 011801, 2010.
[328] Puscasu, R. M. Todd, B. D. Daivis, P. J. and Hansen, J. S. Non-local viscosity of polymer melts approaching their glassy state. J. Chem. Phys., 133: 144907, 2010.
[329] Travis, K. P. Searles, D. J. and Evans, D. J. On the wavevector dependent shear viscosity of a simple fluid. Mol. Phys., 97: 415, 1999.
[330] Todd, B. D. and Evans, D. J. Temperature profile for Poiseuille flow. Phys. Rev. E, 55: 2800, 1997.
[331] Daivis, P. J. and Coelho, J. L. K. Generalized Fourier law for heat flow in a fluid with a strong, nonuniform strain rate. Phys. Rev. E, 61: 6003, 2000.
[332] Cordero, P. and Risso, D. Nonlinear transport laws for low density fluids. Physica A, 257: 36, 1998.
[333] Criado-Sancho, M. Jou, D. and Casas-Vazquez, J. Nonequilibrium kinetic temperatures in flowing gases. Phys. Lett. A, 350: 339, 2006.
[334] Casas-Vázquez, and Jou, D. Nonequilibrium temperature versus local-equilibrium temperature. Phys. Rev. E, 49: 1040, 1994.
[335] Han, M. and Lee, J. S. Method for calculating the heat and momentum fluxes of inhomogeneous fluids. Phys. Rev. E, 70: 061205, 2004.
[336] Ayton, G. Jepps, O.G. and Evans, D. J. On the validity of Fourier's law in systems with spatially varying strain rates. Mol. Phys., 96: 915, 1999.
[337] Todd, B. D. and Evans, D. J. The heat flux vector for highly inhomogeneous nonequilibrium fluids in very narrow pores. J. Chem. Phys., 103: 9804, 1995.
[338] Hoang, H. and Galliero, G. Shear viscosity of inhomogeneous fluids. J. Chem. Phys., 136: 124902, 2012.
[339] Dalton, B. A. Glavatskiy, K. S. Daivis, P. J. Todd, B. D. and Snook, I. K. Linear and nonlinear density response functions for a simple atomic fluid. J. Chem. Phys., 139: 044510, 2013.
[340] Dalton, B. A. Daivis, P. J. Hansen, J. S. and Todd, B. D. Effects of nanoscale inhomogeneity on shearing fluids. Phys. Rev. E, 88: 052143, 2013.
[341] Glavatskiy, K. S. Dalton, B. A. Daivis, P. J. and Todd, B. D. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity. Phys. Rev. E, 91: 062132, 2015.
[342] Dalton, B. A. Glavatskiy, K. S. Daivis, P. J. and Todd, B. D. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity. Phys. Rev. E, 92: 012108, 2015.
[343] Hoang, H. and Galliero, G. Local viscosity of a fluid confined in a narrow pore. Phys. Rev. E, 86: 021202, 2012.
[344] Hoang, H. and Galliero, G. Local shear viscosity of strongly inhomogeneous dense fluids: from the hard-sphere to the Lennard-Jones fluids. J. Phys.: Condens. Matter, 25: 485001, 2013.
[345] Todd, B. D. and Hansen, J. S. Nonlocal viscous transport and the effect on fluid stress. Phys. Rev. E, 78: 051202, 2008.
[346] Todd, B. D. Evans, D. J. Travis, K. P. and Daivis, P. J. Comment on: Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar Couette flows. J. Chem. Phys., 111: 10730, 1999.
[347] Bernardi, S. Todd, B. D. and Searles, D. J. Thermostatting highly confined fluids. J. Chem. Phys., 132: 244706, 2010.
[348] De Luca, S. Todd, B. D. Hansen, J. S. and Daivis, P. J. A new and effective method for thermostatting confined fluids. J. Chem. Phys. 140: 054502, 2014.
[349] Travis, K. P. and Evans, D. J. Molecular spin in a fluid undergoing Poiseuille flow. Phys. Rev. E, 55: 1566, 1997.
[350] Couette code was developed byBernardi, S. based on the MD library of Hansen, J. S. (http://www.jshansen.dk/resources.html).
[351] Eringen, A. C. Contributions to Mechanics. Pergamon, Oxford, 1969.
[352] Travis, K. P. Todd, B. D. and Evans, D. J. Poiseuille flow of molecular fluids. Physica A, 240: 315, 1997.
[353] Sarman, S. and Evans, D. J. Statistical mechanics of viscous flow in nematic fluids. J. Chem. Phys., 99: 9021, 1993.
[354] Kröger, M. Models for Polymeric and Anisotropic Liquids, volume 675 of Lecture Notes in Physics. Springer, New York, 2005.
[355] Zhang, J. Hansen, J. S. Todd, B. D. and Daivis, P. J. Structural and dynamical properties for confined polymers undergoing planar Poiseuille flow. J. Chem. Phys., 126: 144907, 2007.
[356] Doi, M. Introduction to Polymer Physics. Oxford, New York, 1996.
[357] Münstedt, H. Schmidt, M., and Wassner, E. Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-doppler velocimetry. J. Rheol., 44: 413, 2000.
[358] Robert, L. Demay, Y. and Vergnes, B. Stick-slip flow of high density polyethylene in a transparent slit die investigated by laser doppler velocimetry. Rheol. Acta, 43: 89, 2004.
[359] Hansen, J. S. Daivis, P. J. and Todd, B. D. Viscous properties of isotropic fluids composed of linear molecules: Departure from the classical Navier-Stokes theory in nano-confined geometries. Phys. Rev. E, 80: 046322, 2009.
[360] Hansen, J. S. Bruus, H. Todd, B. D. and Daivis, P. J. Rotational and spin viscosities of water: Application to nanofluidics. J. Chem. Phys., 133: 144906, 2010.
[361] Hansen, J. S. Todd, B. D. and Daivis, P. J. Dynamical properties of a confined diatomic fluid undergoing zero mean oscillatory flow: Effect of molecular rotation. Phys. Rev. E, 77: 066707, 2008.
[362] Hansen, J. S. Daivis, P. J. and Todd, B. D. Molecular spin in nano-confined fluidic flows. Microfluid. Nanfluid., 6: 785, 2009.
[363] Hansen, J. S. Dyre, J. C. Daivis, P. J. Todd, B. D. and Bruus, H. Nanoflow hydrodynamics. Phys. Rev. E, 84: 036311, 2011.
[364] Bonthuis, D. L. Horinek, D. Bocquet, L. and Netz, R. R. Electrohydraulic power conversion in planar nanochannels. Phys. Rev. Lett., 103: 144503, 2009.
[365] Bonthuis, D. L. Horinek, D. Bocquet, L. and Netz, R. R. Electrokinetics at aqueous interfaces without mobile charges. Langmuir, 26: 12614, 2010.
[366] De Luca, S. Todd, B. D. Hansen, J. S. and Daivis, P. J. Electropumping of water with rotating electric fields. J. Chem. Phys., 138: 154712, 2013.
[367] De Luca, S. Todd, B. D. Hansen, J. S. and Daivis, P. J. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions. Langmuir, 30: 3095, 2014.
[368] Menzel, A. In preparation, 2016.
[369] Akcasu, A. Z. and Daniels, E. Fluctuation analysis in simple fluids. Phys. Rev. A, 2: 962, 1970.
[370] Ailawadi, N. K. Berne, B. J. and Forster, D. Hydrodynamics and collective angularmomentum fluctuations in molecular fluids. Phys. Rev. A, 3: 1462, 1971.
[371] Boon, J. P. and Yip, S. Molecular Hydrodynamics. McGraw-Hill, New York, 1980.
[372] Eu, B. C. Generalised Thermodynamics: The Thermodynamics of Irreversible Processes and Generalised Hydrodynamics. Kluwer, Dordrecht, 2002.
[373] Holian, B. L. Hoover, W. G. Moran, B. and Straub, G. K. Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics. Phys. Rev. A, 22: 2798, 1980.
[374] Holian, B. L. and Lomdahl, P. S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science, 280: 2085, 1998.
[375] Reed, E. J. Fried, L. E. Henshaw, W. D. and Tarver, C. M. Analysis of simulation technique for steady shock waves in materials with analytical equations of state. Phys. Rev. E, 74: 056706, 2006.
[376] Jou, D. Casas-Vazquez, J. and Lebon, G. Extended Irreversible Thermodynamics. Springer, Heidelberg, 2001.
[377] Dhont, J. K. G. A constitutive relation describing the shear-banding transition. Phys. Rev. E, 60: 4534, 1999.
[378] Masselon, C. Salmon, J.-B. and Colin, A. Nonlocal effects in flows of wormlike micellar solutions. Phys. Rev. Lett., 100: 038301, 2008.
[379] Schiek, R. L. and Shaqfeh, E. S. G. A nonlocal theory for stress in bound, Brownian suspensions of slender, rigid fibers. J. Fluid. Mech., 296: 271, 1995.
[380] Goyon, J. Colin, A. Ovarlez, G. Ajdari, A. and Bocquet, L. Spatial cooperativity in soft glassy flows. Nature, 454: 84, 2008.
[381] Akhmatskaya, E. Todd, B. D. Daivis, P. J. Evans, D. J. Gubbins, K. E. and Pozhar, L. A. A study of viscosity inhomogeneity in porous media. J. Chem. Phys., 106: 4684, 1997.
[382] Travis, K. P. Personal communication.
[383] Palmer, B. J. Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. Phys. Rev. E, 49: 359, 1994.
[384] Smith, B. Hansen, J. S. and Todd, B. D. Nonlocal viscosity kernel of mixtures. Phys. Rev. E, 85: 022201, 2012.
[385] Lado, F. Numerical Fourier transforms in one, two, and three dimensions for liquid state calculations. J. Comput. Phys., 8: 417, 1971.
[386] Puscasu, R. M. Todd, B. D. Daivis, P. J. and Hansen, J. S. An extended analysis of the viscosity kernel for monatomic and diatomic fluids. J. Phys: Condens. Matter, 22: 195105, 2010.
[387] Cadusch, P. J. Todd, B. D. Zhang, J. and Daivis, P. J. A non-local hydrodynamic model for the shear viscosity of confined fluids: analysis of a homogeneous kernel. J. Phys. A: Math. Theor., 41: 035501, 2008.
[388] Glavatskiy, K. S. Dalton, B. A. Daivis, P. J. and Todd, B. D. Non-local viscosity. In preparation.
[389] Dalton, B. A. Glavatskiy, K. S. Daivis, P. J. and Todd, B. D. Non-local density dependent constitutive relations. In preparation.
[390] Dalton, B. A. The effects of density inhomogeneity and non-locality on nanofluidic flow. PhD thesis, RMIT University, 2014.
[391] Bitsanis, I. Magda, J. J. Tirrell, M. and Davis, H. T. Molecular dynamics of flow in micropores. J. Chem. Phys., 87: 1733, 1987.
[392] Bitsanis, I. Vanderlick, T. K. Tirrell, M. and Davis, H. T. A tractable molecular theory of flow in strongly inhomogeneous fluids. J. Chem. Phys., 89: 3152, 1988.
[393] M, C. L. Navier, H. Memoire sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. Fr., 6: 389, 1823.
[394] Bocquet, L. and Barrat, J.-L. Hydrodynamic boundary-conditions, correlation-functions, and Kubo relations for confined fluids. Phys. Rev. E, 49: 3079, 1994.
[395] Petravic, J. and Harrowell, P. On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys., 127: 174706, 2007.
[396] Petravic, J. and Harrowell, P. On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys., 128: 209901, 2008.
[397] Bhatia, S. K. and Nicholson, D. Modeling mixture transport at the nanoscale: Departure from existing paradigms. Phys. Rev. Lett., 100: 236103, 2008.
[398] Koplik, J. Banavar, J. and Willemsen, J. Molecular-dynamics of fluid-flow at solid-surfaces. Phys. Fluids A, 1: 781, 1989.
[399] Brochard, F. and de Gennes, P. G. Shear-dependent slippage at a polymer solid interface. Langmuir, 8: 3033, 1992.
[400] Guo, Z. Zhao, T. S. and Shi, Y. Simple kinetic model for fluid flows in the nanometer scale. Phys. Rev. E, 71: 035301, 2005.
[401] Vinogradova, O. I. Drainage of a thin liquid-film confined between hydrophobic surfaces. Langmuir, 11: 2213, 1995.
[402] Mundy, C. J. Balasubramanian, S. and Klein, M. L. Hydrodynamic boundary conditions for confined fluids via a nonequilibrium molecular dynamics simulation. J. Chem. Phys., 105: 3211, 1996.
[403] Heidenreich, S. Ilg, P. and Hess, S. Boundary conditions for fluids with internal orientational degrees of freedom: Apparent velocity slip associated with the molecular alignment. Phys. Rev. E, 75: 066302, 2007.
[404] Sokhan, V. P. and Quirke, N. Slip coefficient in nanoscale pore flow. Phys. Rev. E, 78: 015301, 2008.
[405] Denniston, C. and Robbins, M. O. General continuum boundary conditions for miscible binary fluids from molecular dynamics simulations. J. Chem. Phys., 125: 214102, 2006.
[406] Cieplak, M. Koplik, J. and Banavar, J. Boundary conditions at a fluid-solid interface. Phys. Rev. Lett., 86: 803, 2001.
[407] Huang, K. and Szlufarska, I. Green–Kubo relation for friction at liquid-solid surfaces. Phys. Rev. E, 89: 032118, 2014.
[408] Hansen, J. S. Todd, B. D. and Daivis, P. J. Prediction of fluid velocity slip at solid surfaces. Phys. Rev. E, 84: 016313, 2011.
[409] Kannam, S. K. Todd, B. D. Hansen, J. S. and Daivis, P. J. Slip flow in graphene nanochannels. J. Chem. Phys., 135: 144701, 2011.
[410] Kannam, S. K. Todd, B. D. Hansen, J. S. and Daivis, P. J. Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys., 136: 024705, 2012.
[411] Kannam, S. K. Todd, B. D. Hansen, J. S. and Daivis, P. J. Interfacial slip friction at a fluidsolid cylindrical boundary. J. Chem. Phys., 136: 244704, 2012.
[412] Kannam, S. K. Todd, B. D. Hansen, J. S. and Daivis, P. J. How fast does water flow in carbon nanotubes? J. Chem. Phys., 138: 094701, 2013.
[413] Hansen, J. S. Daivis, P. J. Dyre, J. Todd, B. D. and Bruus, H. Generalized extended Navier-Stokes theory. J. Chem. Phys. 138: 034503, 2013.
[414] Hansen, J. S. Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids. Phys. Rev. E. 88: 032101, 2013.
[415] Hansen, J. S. Dyer, J. C. Daivis, P. J. Todd, B. D. and Bruus, H. Continuum nanofluidics. Langmuir 31:13275, 2015.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.