Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-24T18:59:34.597Z Has data issue: false hasContentIssue false

16 - Infection, inflammation, and damage to fetal and perinatal brain

from Section 4 - Clinical aspects

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction

Perinatal brain injury is a common cause of cerebral palsy and other neurological disabilities that affect two per 1000 live-births (Stanley & Watson, 1985), an incidence that has remained static over the past 20 years (Pharoah et al., 1998; Colver et al., 2000). Although a longstanding opinion, first proposed by William Little in 1861, suggested that events during labor were entirely responsible for cerebral palsy, there is a growing body of epidemiological evidence arguing for significant involvement of infection and infection-associated neural inflammation in mediating damage to fetal and neonatal brain. Moreover, in discussing the role of infection, it is also important to differentiate between three different pathogenetic entities: first, injury due to direct infection as in meningitis or encephalitis; second, synergistic interactions between systemic, extraneural infection and hypoxic–ischemic insult, compounding the latter; and lastly, fetal or maternal infection that occurs outside the brain, but with effects on postnatal brain development.

Congenital infections and central nervous system toxicity

During gestation, many microorganisms can infect the fetus, causing severe birth defects as well as mental retardation. On the whole, pre- and perinatal infections account for 2%–3% of all congenital anomalies (Stegmann & Carey, 2002). Neurotropic infections can occur throughout pregnancy and during birth (França & Mugayar, 2004), but the peak incidence and occurrence of neuromorphological and developmental abnormalities depends on pathogen type.

Toxoplasma gondii

Following infection with the T. gondii parasite, maternofetal transmission increases steadily the later the maternal infection occurs during pregnancy.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 245 - 260
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S. H., He, Y. Y., Nassief, A., et al. (2000). Effects of lipopolysaccharide priming on acute ischemic brain injury. Stroke, 31, 193–9.CrossRefGoogle ScholarPubMed
Allen, L. B. & Cochran, K. W. (1977). Acceleration of scrapie in mice by target-organ treatment with interferon inducers. Annals of the New York Academy of Sciences, 284, 676–80.CrossRefGoogle ScholarPubMed
Allsopp, T. E. & Fazakerley, J. K. (2000). Altruistic cell suicide and the specialized case of the virus-infected nervous system. Trends in Neurosciences, 23, 284–90.CrossRefGoogle ScholarPubMed
Alpert, S. J., Fergerson, J., & Noel, L. P. (2003). Intrauterine West Nile virus: ocular and systemic findings. American Journal of Ophthalmology, 136, 733–5.CrossRefGoogle ScholarPubMed
Alvarez-Díaz, A., Hilario, E., Cerio, F. G., et al. (2007). Hypoxic-ischemic injury in the immature brain – key vascular and cellular players. Neonatology, 92, 227–35.CrossRefGoogle ScholarPubMed
Amory, J. H., Hitti, J., Lawler, R., et al. (2001). Increased tumor necrosis factor-alpha production after lipopolysaccharide stimulation of whole blood in patients with previous preterm delivery complicated by intra-amniotic infection or inflammation. American Journal of Obstetrics and Gynecology, 185, 1064–7.CrossRefGoogle ScholarPubMed
Andrade, J. Q., Bunduki, V., Curti, S. P., et al. (2006). Rubella in pregnancy: intrauterine transmission and perinatal outcome during a Brazilian epidemic. Journal of Clinical Virology, 35, 285–91.CrossRefGoogle ScholarPubMed
Armitage, G. C. (2000). Periodontal infections and cardiovascular disease – how strong is the association?Oral Diseases, 6, 335–50.CrossRefGoogle ScholarPubMed
Askalan, R., Laughlin, S., Mayank, S., et al. (2001). Chickenpox and stroke in childhood: a study of frequency and causation. Stroke, 32, 1257–62.CrossRefGoogle ScholarPubMed
Bal-Price, A. & Brown, G. C. (2001). Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. Journal of Neuroscience, 21, 6480–91.CrossRefGoogle ScholarPubMed
Bates, T. (1955). Poliomyelitis in pregnancy, fetus and newborn. American Journal of Diseases of Children, 90, 189–95.Google Scholar
Billiards, S. S., Haynes, R. L., Folkerth, R. D., et al. (2006). Development of microglia in the cerebral white matter of the human fetus and infant. Journal of Comparative Neurology, 497, 199–208.CrossRefGoogle ScholarPubMed
Blair, E. & Stanley, F. (2002). Issues in the classification and epidemiology of cerebral palsy. Mental Retardation and Developmental Disabilities Research Reviews, 3, 184–93.3.0.CO;2-R>CrossRefGoogle Scholar
Bohatschek, M., Kloss, C. U., Kalla, R., et al. (2001a). In vitro model of microglial deramification: ramified microglia transform into amoeboid phagocytes following addition of brain cell membranes to microglia-astrocyte cocultures. Journal of Neuroscience Research, 64, 508–22.CrossRefGoogle ScholarPubMed
Bohatschek, M., Werner, A., & Raivich, G. (2001b). Systemic LPS injection leads to granulocyte influx into normal and injured brain: effects of ICAM-1 deficiency. Experimental Neurology, 172, 137–52.CrossRefGoogle ScholarPubMed
Bona, E., Hagberg, H., Loberg, E. M., et al. (1998). Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: short- and long-term outcome. Pediatric Research, 43, 738–45.CrossRefGoogle ScholarPubMed
Bonacorsi, S. & Bingen, E. (2005). Molecular epidemiology of Escherichia coli causing neonatal meningitis. International Journal of Medical Microbiology, 295, 373–81.CrossRefGoogle ScholarPubMed
Braisted, J. E., Tuttle, R., & O'Leary, D. D. (1999). Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. Developmental Biology, 208, 430–40.CrossRefGoogle ScholarPubMed
Brown, A. S. (2006). Prenatal infection as a risk factor for schizophrenia. Schizophrenia Bulletin, 32, 200–2.CrossRefGoogle Scholar
Brown, A. S., Cohen, P., Harkavy-Friedman, J., et al. (2001). AE Bennett Research Award: Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biological Psychiatry, 49, 473–86.CrossRefGoogle Scholar
Cameron, J. S., Alexopoulou, L., Sloane, J. A., et al. (2007). Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. Journal of Neuroscience, 27, 13033–41.CrossRefGoogle ScholarPubMed
Carvey, P. M., Chang, Q., Lipton, J. W., et al. (2003). Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson's disease. Frontiers in Bioscience, 8, S826–37.CrossRefGoogle ScholarPubMed
Cermelli, C., Vinceti, M., Beretti, F., et al. (2003). Risk of sporadic amyotrophic lateral sclerosis associated with seropositivity for herpesviruses and echovirus-7. European Journal of Epidemiology, 18, 123–7.CrossRefGoogle ScholarPubMed
Chakraborty, R. & Luck, S. (2007). Managing congenital syphilis again? The more things change.. Current Opinion in Infectious Diseases, 20, 247–52.CrossRefGoogle ScholarPubMed
Colver, A. F., Gibson, M., Hey, E. N., et al. (2000). Increasing rates of cerebral palsy across the severity spectrum in north-east England 1964–1993. Archives of Disease in Childhood. Fetal and Neonatal Edition, 83, F7–12.CrossRefGoogle ScholarPubMed
Coumans, A. B., Middelanis, J. S., Garnier, Y., et al. (2003). Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatric Research, 53, 770–5.CrossRefGoogle ScholarPubMed
Cunningham, C., Wilcockson, D. C., Campion, S., et al. (2005). Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. Journal of Neuroscience, 25, 9275–84.CrossRefGoogle ScholarPubMed
Dammann, O., Phillips, T. M., Allred, E. N., et al.; ,Elgan Study Investigators. (2001). Mediators of fetal inflammation in extremely low gestational age newborns. Cytokine, 13, 234–9.CrossRefGoogle ScholarPubMed
del Zoppo, G. J., Milner, R., Mabuchi, T., et al. (2007). Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke, 38, 646–51.CrossRefGoogle ScholarPubMed
DeSilva, T. M., Kinney, H. C., Borenstein, N. S., et al. (2007). The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. Journal of Comparative Neurology, 501, 879–90.CrossRefGoogle ScholarPubMed
Dietrich, W. D., Busto, R., Valdes, I., et al. (1990). Effects of normothermic versus mild hyperthermic forebrain ischaemia in rats. Stroke, 21, 1318–25.CrossRefGoogle ScholarPubMed
Dietrich, W. D., Busto, R., & Bethea, J. R. (1999). Postischemic hypothermia and IL-10 treatment provide long-lasting neuroprotection of CA1 hippocampus following transient global ischemia in rats. Experimental Neurology, 158, 444–50.CrossRefGoogle ScholarPubMed
DiMaio, H. (2000). Listeria infection in women. Prime Care Update for Ob/Gyns, 7, 40–5.CrossRefGoogle Scholar
Doctor, B. A., Newman, N., Minich, N. M., et al. (2001). Clinical outcomes of neonatal meningitis in very-low birth-weight infants. Clinical Pediatrics, 40, 473–80.CrossRefGoogle ScholarPubMed
Doganay, M. (2003). Listeriosis: clinical presentation. FEMS Immunology and Medical Microbiology, 35, 173–5.CrossRefGoogle ScholarPubMed
Duggan, P. J., Maalouf, E. F., Watts, T. L., et al. (2001). Intrauterine T-cell activation and increased proinflammatory cytokine concentrations in preterm infants with cerebral lesions. Lancet, 358, 1699–700.CrossRefGoogle ScholarPubMed
Duncan, J. R., Cock, M. L., Scheerlinck, J. P., et al. (2002). White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatric Research, 52, 941–9.CrossRefGoogle ScholarPubMed
Duncan, J. R., Camm, E., Loeliger, M., et al. (2004). Effects of umbilical cord occlusion in late gestation on the ovine fetal brain and retina. Journal of the Society for Gynecologic Investigation, 11, 369–76.CrossRefGoogle ScholarPubMed
Duncan, J. R., Cock, M. L., Suzuki, K., et al. (2006). Chronic endotoxin exposure causes brain injury in the ovine fetus in the absence of hypoxemia. Journal of the Society for Gynecologic Investigation, 13, 87–96.CrossRefGoogle ScholarPubMed
Dunn, N., Mullee, M., Perry, V. H., et al. (2005). Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Disease and Associated Disorders, 19, 91–4.CrossRefGoogle ScholarPubMed
Egarter, C., Leitich, H., Karas, H., et al. (1996). Antibiotic treatment in preterm premature rupture of membranes and neonatal morbidity: a metaanalysis. American Journal of Obstetrics and Gynecology, 174, 589–97.CrossRefGoogle ScholarPubMed
Enders, G., Miller, E., Cradock-Watson, J., et al. (1994). Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet, 343, 1548–5.CrossRefGoogle ScholarPubMed
Fatemi, S. H., Earle, J., Kanodia, R., et al. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cellular and Molecular Neurobiology, 22, 25–33.CrossRefGoogle Scholar
Folkerth, R. D. (2006). Periventricular leukomalacia: overview and recent findings. Pediatric and Developmental Pathology, 9, 3–13.CrossRefGoogle ScholarPubMed
França, C. M. & Mugayar, L. R. (2004). Intrauterine infections: a literature review. Special Care in Dentistry, 24, 250–3.CrossRefGoogle ScholarPubMed
Garnier, Y., Berger, R., Alm, S., et al. (2006). Systemic endotoxin administration results in increased S100B protein blood levels and periventricular brain white matter injury in the preterm fetal sheep. European Journal of Obstetrics, Gynecology and Reproductive Biology, 124, 15–22.CrossRefGoogle ScholarPubMed
Gosselin, D. & Rivest, S. (2008). MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation. Molecular Psychiatry, 13, 480–97.CrossRefGoogle ScholarPubMed
Grether, J. K. & Nelson, K. B. (1997). Maternal infection and cerebral palsy in infants of normal birth weight. JAMA: The Journal of American Medical Association, 278, 207–11.CrossRefGoogle ScholarPubMed
Griffin, D. E. (2005). Neuronal cell death in alphavirus encephalomyelitis. Current Topics in Microbiology and Immunology, 289, 57–77.Google ScholarPubMed
Griffith, B. P. & Booss, J. (1994). Neurologic infections of the fetus and newborn. Neurologic Clinic, 12, 541–64.CrossRefGoogle Scholar
Gross, C. E., Bednar, M. M., Howard, D. B., et al. (1993). Transforming growth factor-beta 1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke, 24, 558–62.CrossRefGoogle Scholar
Hagberg, B., Hagberg, G., Beckung, E., et al. (2001). Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991–94. Acta Paediatrica, 90, 271–7.CrossRefGoogle ScholarPubMed
Haynes, S. E., Hollopeter, G., Yang, G., et al. (2006). The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neuroscience, 9, 1512–19.CrossRefGoogle ScholarPubMed
Heath, P. T., Nik Yusoff, N. K., & Baker, C. J. (2003). Neonatal meningitis. Archives of Disease in Childhood Fetal and Neonatal Edition, 88, F173–8.CrossRefGoogle ScholarPubMed
Holland, B. A., Haas, D. K., Norman, D., et al. (1986). MRI of normal brain maturation. AJNR American Journal of Neuroradiology, 7, 201–8.Google ScholarPubMed
Holmes, C., El-Okl, M., Williams, A. L., et al. (2003). Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 74, 788–9.CrossRefGoogle ScholarPubMed
Hoopfer, E. D., McLaughlin, T., Watts, R. J., et al. (2006). Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron, 50, 883–95.CrossRefGoogle ScholarPubMed
Hristeva, L., Booy, R., Bowler, I., et al. (1993). Prospective surveillance of neonatal meningitis. Archives of Disease in Childhood, 69, 14–18.CrossRefGoogle ScholarPubMed
Impey, L., Greenwood, C., MacQuillan, K., et al. (2001). Fever in labour and neonatal encephalopathy: a prospective cohort study. BJOG International Journal of Obstetrics and Gynaecology, 108, 594–7.CrossRefGoogle ScholarPubMed
Innocenti, G. M., Clarke, S., & Koppel, H. (1983). Transitory macrophages in the white matter of the developing visual cortex. II. Development and relations with axonal pathways. Brain Research, 313, 55–66.CrossRefGoogle ScholarPubMed
Jacobsson, B. & Hagberg, G. (2004). Antenatal risk factors for cerebral palsy. Best Practice and Research Clinical Obstetrics and Gynaecology, 18, 425–36.CrossRefGoogle ScholarPubMed
Jacobsson, B., Hagberg, G., Hagberg, B., et al. (2002). Cerebral palsy in preterm infants: a population-based case-control study of antenatal and intrapartal risk factors. Acta Paediatrica, 91, 946–51.CrossRefGoogle ScholarPubMed
Jones, L. L., Kreutzberg, G. W., & Raivich, G. (1998). Transforming growth factor beta's 1, 2 and 3 inhibit proliferation of ramified microglia on an astrocyte monolayer. Brain Research, 795, 301–6.CrossRefGoogle ScholarPubMed
Kawano, T., Kunz, A., Abe, T., et al. (2007). iNOS-derived NO and nox2-derived superoxide confer tolerance to excitotoxic brain injury through peroxynitrite. Journal of Cerebral Blood Flow and Metabolism, 27, 1453–62.CrossRefGoogle ScholarPubMed
Kendall, G. & Peebles, D. M. (2005). Acute fetal hypoxia: the modulating effect of infection. Early Human Development, 81, 27–34.CrossRefGoogle ScholarPubMed
Kendall, G., Hristova, M., Peebles, D. M., et al. (2006). Deletion of the TNF cluster abolishes lipopolysaccharide sensitization of the brain to hypoxia-ischemia in the neonatal mouse. Abstracts – Society for Neuroscience, 282.4.Google Scholar
Kenyon, S., Pike, K., Jones, D. R., et al. (2008). Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-year follow-up of the ORACLE II trial. Lancet, 372, 1319–27.CrossRefGoogle ScholarPubMed
Khabar, K. S., el Barbary, M. A., Khouqueer, F., et al. (1997). Circulating endotoxin and cytokines after cardiopulmonary bypass: differential correlation with duration of bypass and systemic inflammatory response/multiple organ dysfunction syndromes. Clinical Immunology and Immunopathology, 85, 97–103.CrossRefGoogle ScholarPubMed
Kiefer, R., Streit, W. J., Toyka, K. V., et al. (1995). Transforming growth factor-beta 1: a lesion-associated cytokine of the nervous system. International Journal of Developmental Neuroscience, 13, 331–9.CrossRefGoogle Scholar
Kim, H. & Koh, G. (2000). Lipopolysaccharide activates matrix metalloproteinase-2 in endothelial cells through an NF-kappaB-dependent pathway. Biochemical and Biophysical Research Communications, 269, 401–5.CrossRefGoogle ScholarPubMed
Klinger, G., Chin, C. N., Beyene, J., et al. (2000). Predicting the outcome of neonatal bacterial meningitis. Pediatrics, 106, 477–82.CrossRefGoogle ScholarPubMed
Kloss, C. U., Kreutzberg, G. W., & Raivich, G. (1997). Proliferation of ramified microglia on an astrocyte monolayer: characterization of stimulatory and inhibitory cytokines. Journal of Neuroscience Research, 49, 248–54.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Kloss, C. U., Bohatschek, M., Kreutzberg, G. W., et al. (2001). Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Experimental Neurology, 168, 32–46.CrossRefGoogle ScholarPubMed
Koizumi, S., Shigemoto-Mogami, Y., Nasu-Tada, K., et al. (2007). UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 446, 1091–5.CrossRefGoogle ScholarPubMed
Lane, B., Sullivan, E. V., Lim, K. O., et al. (1996). White matter MR hyperintensities in adult patients with congenital rubella. AJNR American Journal of Neuroradiology, 17, 99–103.Google ScholarPubMed
Lehnardt, S., Massillon, L., Follett, P., et al. (2003). Activation of innate immunity in the CNS triggers neurodegeneration through a toll-like receptor 4-dependent pathway. Proceedings of the National Academy of Sciences of the U S A, 100, 8514–19.CrossRefGoogle ScholarPubMed
Lewis, J., Oyler, G. A., Ueno, K., et al. (1999). Inhibition of virus-induced neuronal apoptosis by Bax. Nature Medicine, 5, 832–5.CrossRefGoogle ScholarPubMed
Lieberman, E., Eichenwald, E., Mathur, G., et al. (2000). Intrapartum fever and unexplained seizures in term infants. Pediatrics, 106, 983–8.CrossRefGoogle ScholarPubMed
Liu, B., Gao, H. M., & Hong, J. S. (2003). Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environmental Health Perspectives, 111, 1065–73.CrossRefGoogle ScholarPubMed
Luchsinger, J. A., Pablos-Mendez, A., Knirsch, C., et al. (2001). Antibiotic use and risk of ischemic stroke in the elderly. American Journal of Medicine, 111, 361–6.CrossRefGoogle ScholarPubMed
MacDonald, J. M., Beach, M. G., Porpiglia, E., et al. (2006). The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron, 50, 869–81.CrossRefGoogle ScholarPubMed
Makwana, M., Jones, L. L., Cuthill, D., et al. (2007). Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. Journal of Neuroscience, 27, 11201–13.CrossRefGoogle ScholarPubMed
Malinger, G., Lev, D., Zahalka, N., et al. (2003). Fetal cytomegalovirus infection of the brain: the spectrum of sonographic findings. AJNR American Journal of Neuroradiology, 24, 28–32.Google ScholarPubMed
Mallard, C., Welin, A. K., Peebles, D. M., et al. (2003). White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochemical Research, 28, 215–23.CrossRefGoogle ScholarPubMed
Mander, P., Borutaite, V., Moncada, S., et al. (2005). Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. Journal of Neuroscience Research, 79, 208–15.CrossRefGoogle ScholarPubMed
Marculescu, R., Richter, L., & Rappersberger, K. (2006). Infections with herpes simplex and varicella-zoster viruses during pregnancy. Hautarzt, 57, 207–16.CrossRefGoogle ScholarPubMed
Martyn, C. N. & Osmond, C. (1995). Parkinson's disease and the environment in early life. Journal of the Neurological Sciences, 132, 201–6.CrossRefGoogle ScholarPubMed
Mathur, A., Tandon, H. O., Mathur, K. R., et al. (1985). Japanese encephalitis infection during pregnancy. Indian Journal of Medical Research, 81, 9–12.Google ScholarPubMed
Mattock, C., Marmot, M., & Stern, G. (1988). Could Parkinson's disease follow intra-uterine influenza? A speculative hypothesis. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 753–6.CrossRefGoogle ScholarPubMed
Matute, C., Domercq, M., & Sánchez-Gómez, M. V. (2006). Glutamate-mediated glial injury: mechanisms and clinical importance. Glia, 53, 212–24.CrossRefGoogle ScholarPubMed
Mercer, B. M. & Arheart, K. L. (1995). Antimicrobial therapy in expectant management of preterm premature rupture of the membranes. Lancet, 346, 1271–9.CrossRefGoogle ScholarPubMed
Meyer, U., Murray, P. J., Urwyler, A., et al. (2008). Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Molecular Psychiatry, 13, 208–21.CrossRefGoogle ScholarPubMed
Monier, A., Evrard, P., Gressens, P., et al. (2006). Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. Journal of Comparative Neurology, 499, 565–82.CrossRefGoogle ScholarPubMed
Monier, A., Adle-Biassette, H., Delezoide, A. L., et al. (2007). Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. Journal of Neuropathology and Experimental Neurology, 66, 372–82.CrossRefGoogle ScholarPubMed
Nelson, K. B. & Grether, J. K. (1998). Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. American Journal of Obstetrics and Gynecology, 179, 50–513.CrossRefGoogle ScholarPubMed
Nguyen, M. D., D'Aigle, T., Gowing, G., et al. (2004). Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. Journal of Neuroscience, 24, 1340–9.CrossRefGoogle Scholar
Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314–18.CrossRefGoogle ScholarPubMed
Olsson, A., Kayhan, G., Lagercrantz, H., et al. (2003). IL1 beta depresses respiration and anoxic survival via a prostaglandin-dependent pathway in neonatal rats, 1. Pediatric Research, 54, 326–31.CrossRefGoogle Scholar
Orio, M., Kunz, A., Kawano, T., et al. (2007). Lipopolysaccharide induces early tolerance to excitotoxicity via nitric oxide and cGMP. Stroke, 38, 2812–17.CrossRefGoogle ScholarPubMed
Ornoy, A. & Tenenbaum, A. (2006). Pregnancy outcome following infections by coxsackie, echo, measles, mumps, hepatitis, polio and encephalitis viruses. Reproductive Toxicology, 21, 446–57.CrossRefGoogle ScholarPubMed
Partridge, S. C., Mukherjee, P., Henry, R. G., et al. (2004). Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. NeuroImage, 22, 1302–14.CrossRefGoogle ScholarPubMed
Paryani, S. G. & Arvin, A. M. (1986). Intrauterine infection with varicella-zoster virus after maternal varicella. New England Journal of Medicine, 314, 1542–6.CrossRefGoogle ScholarPubMed
Pastuszak, A. L., Levy, M., Schick, B., et al. (1994). Outcome after maternal varicella infection in the first 20 weeks of pregnancy. New England Journal of Medicine, 330, 901–5.CrossRefGoogle ScholarPubMed
Patterson, P. H. (2007). Neuroscience. Maternal effects on schizophrenia risk. Science, 318, 576–7.CrossRefGoogle ScholarPubMed
Peebles, D. M., Miller, S., Newman, J. P., et al. (2003). The effect of systemic administration of lipopolysaccharide on cerebral haemodynamics and oxygenation in the 0.65 gestation ovine fetus in utero. BJOG: An International Journal of Obstetrics and Gynaecology, 110, 735–43.CrossRefGoogle ScholarPubMed
Pharoah, P. O. D., Cooke, T., Johnson, M. A., et al. (1998). Epidemiology of cerebral palsy in England and Scotland, 1984–9. Archives of Disease in Childhood Fetal and Neonatal Edition, 79, F21–5.CrossRefGoogle Scholar
Rados, M., Judas, M., & Kostović, I. (2006). In vitro MRI of brain development. European Journal of Radiology, 57, 187–98.CrossRefGoogle ScholarPubMed
Raivich, G. & Banati, R. (2004). Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Research Reviews, 46, 261–81.CrossRefGoogle ScholarPubMed
Raivich, G., Bohatschek, M., Kloss, C. U., et al. (1999). Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Research Reviews, 30, 77–105.Google ScholarPubMed
Rezaie, P. & Male, D. (1999). Colonisation of the developing human brain and spinal cord by microglia: a review. Microscopy Research and Technique, 45, 359–82.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Rezaie, P., Dean, A., Male, D., et al. (2005). Microglia in the cerebral wall of the human telencephalon at second trimester. Cerebral Cortex, 15, 938–49.CrossRefGoogle ScholarPubMed
Rio-Hortega, P. del. (1919). El “tercer elemento” de los centros nerviosos. II. Intervencion de la microglia en los procesos patologicos (Cellulas en bastocito y cuerpos granulo-adiposos). Boletín de la Real Sociedad Española de Historia Natural Sección Biológica, 9, 91–103.Google Scholar
Rio-Hortega, P. del. (1932). Microglia. In Cytology and Cellular Pathology of the Nervous System, Vol. II, ed. Penfield, E.. New York: Paul B. Hoeber, pp. 481–534.Google Scholar
Robertson, S. A., Skinner, R. J., & Care, A. S. (2006). Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice. Journal of Immunology, 177, 4888–96.CrossRefGoogle ScholarPubMed
Robertson, S. A., Care, A. S., & Skinner, R. J. (2007). Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice. Biology of Reproduction, 76, 738–48.CrossRefGoogle ScholarPubMed
Robles, E., Huttenlocher, A., & Gomez, T. M. (2003). Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron, 38, 597–609.CrossRefGoogle ScholarPubMed
Rosenberg, G. A., Estrada, E. Y., & Mobashery, S. (2007). Effect of synthetic matrix metalloproteinase inhibitors on lipopolysaccharide-induced blood-brain barrier opening in rodents: differences in response based on strains and solvents. Brain Research, 1133, 186–92.CrossRefGoogle ScholarPubMed
Rosenzweig, H. L., Minami, M., Lessov, N. S., et al. (2007). Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. Journal of Cerebral Blood Flow and Metabolism, 27, 1663–74.CrossRefGoogle ScholarPubMed
Sacco, R. L. (2001). Newer risk factors for stroke. Neurology, 57, S31–4.CrossRefGoogle ScholarPubMed
Salafia, C. M., Minior, V. K., Rosenkrantz, T. S., et al. (1995). Maternal, placental, and neonatal associations with early germinal matrix/intraventricular hemorrhage in infants born before 32 wk gestation. American Journal of Perinatology, 12, 429–36.CrossRefGoogle Scholar
Sangtawesin, V., Lertsutthiwong, W., Kanjanapattanakul, W., et al. (2005). Outcome of maternal syphilis at Rajavithi Hospital on offsprings. Journal of the Medical Association of Thailand, 88, 1519–25.Google ScholarPubMed
Savman, K., Blennow, M., Gustafson, K., et al. (1998). Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatric Research, 43, 746–51.CrossRefGoogle ScholarPubMed
Seymour, G. J., Ford, P. J., Cullinan, M. P., et al. (2007). Relationship between periodontal infections and systemic disease. Clinical Microbiology and Infection, 13 (Suppl. 4), 3–10.CrossRefGoogle ScholarPubMed
Shalak, L. F., Laptook, A. R., Jafri, H. S., et al. (2002). Clinical chorioamnionitis, elevated cytokines, and brain injury in term infants. Pediatrics, 110, 673–80.CrossRefGoogle ScholarPubMed
Shi, L., Fatemi, S. H., Sidwell, R. W., et al. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. Journal of Neuroscience, 23, 297–302.CrossRefGoogle ScholarPubMed
Silveira, R. C. & Procianoy, R. S. (2003). Interleukin-6 and tumor necrosis factor-alpha levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic – ischemic encephalopathy. Journal of Pediatrics, 143, 625–9.CrossRefGoogle ScholarPubMed
Smith, S. E., Li, J., Garbett, K., et al. (2007). Maternal immune activation alters fetal brain development through interleukin-6. Journal of Neuroscience, 27, 10695–702.CrossRefGoogle ScholarPubMed
Solenski, N. J. (2007). Emerging risk factors for cerebrovascular disease. Current Drug Targets, 8, 802–16.CrossRefGoogle ScholarPubMed
Spera, P. A., Ellison, J. A., Feuerstein, G. Z., et al. (1998). IL-10 reduces rat brain injury following focal stroke. Neuroscience Letters, 251, 189–92.CrossRefGoogle ScholarPubMed
Stagno, S., Pass, R. F., Cloud, G., et al. (1986). Primary cytomegalovirus infection in pregnancy: incidence, transmission to fetus, and clinical outcome. JAMA: The Journal of American Medical Association, 256, 1904–8.CrossRefGoogle ScholarPubMed
Stanley, F., Blair, E., & Alberman, E. (2000). Cerebral Palsies: Epidemiology and Casual Pathways. London: MacKeith Press.Google Scholar
Stanley, F. J. & Watson, L. (1985). Trends in perinatal mortality cerebral palsy in Western Australia. British Medical Journal, 304, 1658–63.CrossRefGoogle Scholar
Stegmann, B. J. & Carey, J. C. (2002). TORCH Infections. Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes infections. Current Women's Health Reports, 2, 253–8.Google Scholar
Steiner, I., Kennedy, P. G., & Pachner, A. R. (2007). The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurology, 6, 1015–28.CrossRefGoogle ScholarPubMed
Stevens, S. L., Ciesielski, T. M., Marsh, B. J., et al. (2008). Toll-like receptor 9: a new target of ischemic preconditioning in the brain. Journal of Cerebral Blood Flow and Metabolism, 28, 1040–7.CrossRefGoogle Scholar
Stolp, H. B., Ek, C. J., Johansson, P. A., et al. (2007). Effect of minocycline on inflammation-induced damage to the blood-brain barrier and white matter during development. European Journal of Neuroscience, 26, 3465–74.CrossRefGoogle ScholarPubMed
Streit, W. J., Graeber, M. B., & Kreutzberg, G. W. (1988). Functional plasticity of microglia: a review. Glia, 1, 301–7.CrossRefGoogle ScholarPubMed
Strle, K., Zhou, J. H., Shen, W. H., et al. (2001). Interleukin-10 in the brain. Critical Reviews in Immunology, 21, 427–49.Google Scholar
Sugita, K., Ando, M., Makino, M., et al. (1991). Magnetic resonance imaging of the brain in congenital rubella virus and cytomegalovirus infections. Neuroradiology, 33, 239–42.CrossRefGoogle ScholarPubMed
Svare, J., Andersen, L. F., Langhoff-Roos, J., et al. (1991). Maternal-fetal listeriosis: 2 case reports. Gynecologic and Obstetric Investigation, 31, 179–81.CrossRefGoogle ScholarPubMed
Swash, M. & Schwartz, M. S. (1992). What do we really know about amyotrophic lateral sclerosis?Journal of the Neurologic Sciences, 113, 4–16.CrossRefGoogle ScholarPubMed
Takano, T., Morimoto, M., Bamba, N., et al. (2006). Frontal-dominant white matter lesions following congenital rubella and cytomegalovirus infection. Journal of Perinatal Medicine, 34, 254–5.CrossRefGoogle ScholarPubMed
Tang, J. W., Aarons, E., Hesketh, L. M., et al. (2003). Prenatal diagnosis of congenital rubella infection in the second trimester of pregnancy. Prenatal Diagnosis, 23, 509–12.CrossRefGoogle ScholarPubMed
Taylor, D. L., Jones, F., Kubota, E. S., et al. (2005). Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. Journal of Neuroscience, 25, 2952–64.CrossRefGoogle ScholarPubMed
Terrone, D. A., Rinehart, B. K., Granger, J. P., et al. (2001). Interleukin-10 administration and bacterial endotoxin-induced preterm birth in a rat model. Obstetrics and Gynecology, 98, 476–80.Google Scholar
Thiébaut, R., Leproust, S., Chêne, G., et al. (2007). Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients' data. SYROCOT (Systematic Review on Congenital Toxoplasmosis) study group. Lancet, 369, 115–22.Google Scholar
Valtonen, V., Kuikka, A., & Syrjänen, J. (1993). Thrombo-embolic complications in bacteraemic infections. European Heart Journal, 14 (Suppl. K), 20–3.Google ScholarPubMed
Vazeux, R. (1991). AIDS encephalopathy and tropism of HIV for brain monocytes/macrophages and microglial cells. Pathobiology, 59, 214–18.CrossRefGoogle ScholarPubMed
Vincent, V. A., Tilders, F. J., & Dam, A. M. (1997). Inhibition of endotoxin-induced nitric oxide synthase production in microglial cells by the presence of astroglial cells: a role for transforming growth factor beta. Glia, 19, 190–8.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Volpe, J. J. (2001). Neurobiology of periventricular leukomalacia in the premature infant. Pediatric Research, 50, 553–62.CrossRefGoogle ScholarPubMed
Wang, H., Bloom, O., Zhang, M., et al. (1999). HMG-1 as a late mediator of endotoxin lethality in mice. Science, 285, 248–51.CrossRefGoogle ScholarPubMed
Wang, X., Hagberg, H., Nie, C., et al. (2007). Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. Journal of Neuropathology and Experimental Neurology, 66, 552–61.CrossRefGoogle ScholarPubMed
Wang, X., Carmichael, D. W., Cady, E. B., et al. (2008). Greater hypoxia-induced cell death in prenatal brain after bacterial-endotoxin pretreatment is not because of enhanced cerebral energy depletion: a chicken embryo model of the intrapartum response to hypoxia and infection. Journal of Cerebral Blood Flow and Metabolism, 28, 948–60.CrossRefGoogle Scholar
Wu, Y. W. & Colford, J. M. (2000). Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA: The Journal of American Medical Association, 284, 1417–24.CrossRefGoogle ScholarPubMed
Xiao, B. G., Bai, X. F., Zhang, G. X., et al. (1996). Shift from anti- to proinflammatory cytokine profiles in microglia through LPS- or IFN-gamma-mediated pathways. Neuroreport, 7, 1893–8.CrossRefGoogle ScholarPubMed
Xue, M. & del Bigio, M. R. (2005). Immune pre-activation exacerbates hemorrhagic brain injury in immature mouse brain. Journal of Neuroimmunology, 165, 75–82.CrossRefGoogle ScholarPubMed
Yang, L., Sameshima, H., Ikeda, T., et al. (2004). Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. Journal of Obstetrics and Gynaecology Research, 30, 142–7.CrossRefGoogle ScholarPubMed
Yoon, B. H., Romero, R., Kim, C. J., et al. (1995). Amniotic fluid interleukin-6: a sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. American Journal of Obstetrics and Gynecology, 172, 960–70.CrossRefGoogle ScholarPubMed
Yoon, B. H., Romero, R., Yang, S. H., et al. (1996). Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. American Journal of Obstetrics and Gynecology, 174, 1433–40.CrossRefGoogle ScholarPubMed
Yow, M. D., Williamson, D. W., Leeds, L. J., et al. (1988). Epidemiologic characteristics of cytomegalovirus infection in mothers and their infants. American Journal of Obstetrics and Gynecology, 158, 1189–95.CrossRefGoogle ScholarPubMed
Zakharov, V. V., Bogdanova, M. N., & Mosevitsky, M. I. (2005). Specific proteolysis of neuronal protein GAP-43 by calpain: characterization, regulation, and physiological role. Biochemistry Biokhimiia, 70, 897–907.CrossRefGoogle ScholarPubMed
Zuckerman, L., Rehavi, M., Nachman, R., et al. (2003). Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology, 28, 1778–89.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×